Indefinite integral

Indefinite Integral

We have covered the introduction to derivatives. Another topic would be to find a function if we know it’s derivative.

This very interesting and we won’t spend much time explaining what the antiderivative is in that case.

A function F is an antiderivative of the function f if F'(x)=f(x) for all x in the domain of f.

The only problem is when we calculated the derivative of a constant C, we found 0.

Let’s check the following fact:

If we have F'(x)=3x^{2}

We know that (x^{3})'=3x^{2}

But so is: (x^{3}+1000)'.

And we can add any constant, the derivative will be the same.

We get the theorem:

Theorem: General form of antiderivatives

Let F be an antiderivative of f over an interval I. Then,

1. For each constant C, the function F(x)+C is also an antiderivative of f over I.

2. If G is an antiderivative of f over I, there is a constant C for which G(x)=F(x)+C over I.

Meaning, the general form of the antiderivative of f over I is F(x)+C.

EXAMPLE:

Find the antiderative of 6x

We can see that it is 3x^{2}+C

Indefinite Integrals

This is the notation used for the antiderivatives.

    \[\int f(x) dx=F(x)+C\]

f(x) is called the integrand and the variable x is the variable \; of \; integration

Fundamental formulas

1. {\displaystyle \int \frac{d}{dx}[f(x)] \,dx}=f(x)+C

2.  {\displaystyle \int [f(x)+g(x)] \,dx}=\int f(x) dx+ \int g(x) dx

3. {\displaystyle \int af(x)dx}=a \int f(x) \,dx with a a constant

4. {\displaystyle \int \frac{dx}{x}}=\ln |x|+C

5. {\displaystyle \int x^{n} \,dx}=\frac{x^{n+1}}{n+1}+C

6. {\displaystyle \int e^{x} \,dx}=e^{x}+C

7. {\displaystyle \int a^{x} \,dx}=\frac{a^{x}}{\ln a}+C with  a>0, a \neq 1

8. {\displaystyle \int \sin x \,dx}=-\cos x +C

9.  {\displaystyle \int \cos x \,dx}=\sin x +C

10. {\displaystyle \int \tan x\, dx}=\ln |\sec x|+C

11.  {\displaystyle \int \cot x\, dx}=\ln |\sin x|+C

12. {\displaystyle \int \sec x\, dx}=\ln |\sec x +\tan x|+C

13. {\displaystyle \int \csc x\, dx}=\ln |\csc x -\cot x|+C

14. {\displaystyle \int \sec^{2} x\, dx}=\tan x + C

15. {\displaystyle \int \frac{dx}{1+x^{2}}}= \tan^{-1} x +C

16. {\displaystyle \int \frac{dx}{a^{2}+x^{2}}} = \frac{1}{a}\tan^{-1} \frac{x}{a} +C

17.  {\displaystyle \int \frac{dx}{x^{2}-a^{2}}}= \frac{1}{2a} \ln |\frac{x-a}{x+a}|+C

18.  {\displaystyle \int \frac{dx}{a^{2}-x^{2}}}= \frac{1}{2a} \ln |\frac{a+x}{a-x}|+C

19.  {\displaystyle \int \frac{dx}{\sqrt{a^{2}-x^{2}}}}= \sin ^{-1} \frac{x}{a}+C

20. {\displaystyle \int \frac{dx}{\sqrt{x^{2} \pm a^{2}}}=\ln |x+\sqrt{x^{2} \pm a^{2}} |}+C

Problem 1:

Solve: {\displaystyle \int \frac{x+3}{x^{2}-2x-5}\, dx}

We know that \frac{d}{dx} (x^{2}-2x-5)=2x-2

From x+3 we can do some inspection

x+3=\frac{1}{2}(2x+6)=\frac{1}{2}(2x+8-2)=\frac{1}{2}(2x-2)+4

We get

(1)   \begin{equation*} \begin{split} \displaystyle \int \frac{x+3}{x^{2}-2x-5}\, dx}&={\displaystyle \int \frac{\frac{1}{2}(2x-2)+4}{x^{2}-2x-5}\, dx}\\ &=\frac{1}{2}{\displaystyle \int \frac{2x-2}{x^{2}-2x-5}\,dx}+4{\displaystyle \int \frac{dx}{x^{2}-2x-5}}\\ &= \frac{1}{2}{\displaystyle \int \frac{2x-2}{x^{2}-2x-5}\,dx}+4{\displaystyle \int \frac{dx}{(x-1)^{2}-(\sqrt{6})^{2}}}\\ &= \frac{1}{2} \ln |x^{2}-2x-5|+4\cdot \frac{1}{2 \sqrt{6}} \ln \left |\frac{(x-1)-\sqrt{6}}{(x-1)+\sqrt{6}} \right | +C \end{split} \end{equation*}

Finally:

{\displaystyle \int \frac{x+3}{x^{2}-2x-5}\, dx}=\frac{1}{2} \ln |x^{2}-2x-5|+2\cdot \frac{1}{ \sqrt{6}} \ln \left |\frac{(x-1)-\sqrt{6}}{(x-1)+\sqrt{6}} \right | +C

Problem 2:

Solve: {\displaystyle \int \frac{3x+2}{\sqrt{x^{2}+5x+12}}\, dx}

We know that \frac{d}{dx} (x^{2}+5x+12)=2x+5

From 3x+2 we can do some inspection

3x+2=\frac{3}{2}(2x+\frac{4}{3})=\frac{3}{2}(2x+5-\frac{11}{3})=\frac{3}{2}(2x+5)-\frac{11}{2}

We get

(2)   \begin{equation*} \begin{split} \displaystyle \int \frac{3x+2}{\sqrt{x^{2}+5x+12}}\, dx}&= {\displaystyle \int \frac{\frac{3}{2}(2x+5)-\frac{11}{2}}{\sqrt{x^{2}+5x+12}}\, dx}\\ &=\frac{3}{2}{\displaystyle \int \frac{(2x+5)}{\sqrt{x^{2}+5x+12}}\, dx}-\frac{11}{2} {\displaystyle \int \frac{dx}{\sqrt{x^{2}+5x+12}}}\\ &=\frac{3}{2}{\displaystyle \int \frac{(2x+5)}{\sqrt{x^{2}+5x+12}}\, dx}-\frac{11}{2} {\displaystyle \int \frac{dx}{\sqrt{(x+\frac{5}{2})^{2}+\frac{23}{4}}}} \\ &=\frac{3}{2} \ln |x^{2}+5x+12|-\frac{11}{2} \ln | x+ \frac{5}{2}+\sqrt{x^{2}+5x+12}| +C \end{split} \end{equation*}

Finally:

{\displaystyle \int \frac{3x+2}{\sqrt{x^{2}+5x+12}}\, dx}=\frac{3}{2} \ln |x^{2}+5x+12|-\frac{11}{2} \ln | x+ \frac{5}{2}+\sqrt{x^{2}+5x+12}|+C

Be the first to comment

Leave a Reply

Your email address will not be published.


*