Implicit differentiation

Implicit differentiation

Sometimes we are presented with equations in two variables, x and y that may have multiple solutions for x in terms of y or for y in terms of x.
The solutions found will be implicitly defined by the given equation.

 For parametric functions, we use the following rule:

{\displaystyle \frac{dy}{dx}=\frac{dy/du}{dx/du} }

 

Problem 1
Given:
x^{2}+y^{2}=1
Find y' or \frac{dy}{dx}

Solution:

2x+2y \frac{dy}{dx}=0
2y \frac{dy}{dx}=-2x
\frac{dy}{dx}=-\frac{2x}{2y}

Finally :
\frac{dy}{dx}=-\frac{x}{y}
We know that the given equation is a circle.
\frac{dy}{dx} is simply the slope of the tangent of the circle at any point of coordinates (x,y)

 

Problem 2:
Given:
xy+x-2y-1=0
Find y' or \frac{dy}{dx}

Solution:
\frac{d(xy)}{dx}+\frac{dx}{dx}-\frac{d(2y)}{dx}-\frac{d(1)}{dx}=\frac{d(0)}{dx}
x\frac{dy}{dx}+y\frac{dx}{dx}+\frac{dx}{dx}-2\frac{dy}{dx}-\frac{d(1)}{dx}=\frac{d(0)}{dx}
x\frac{dy}{dx}+y+1-2\frac{dy}{dx}-0=0
(x-2)\frac{dy}{dx}+y+1=-(y+1)
\frac{dy}{dx}=-\frac{y+1}{x-2}=\frac{y+1}{2-x}

Finally :
\frac{dy}{dx}=-\frac{y+1}{x-2}=\frac{y+1}{2-x}

 

Problem 3:

A sphere has a radius R at time t_{0}. What will be the value of that radius R when the rate of increase of the volume V is twice the rate of increase of the radius R.

Find the corresponding value of the Volume V.

Solution

The volume of a sphere is given by the formula:

{\displaystyle V=\frac{4}{3}\pi R^{3}}

{\displaystyle \frac{dV}{dt}=\frac{4}{3}\pi \cdot 3R^{2} \frac{dR}{dt}}

But: At the time when the rate of increase of V is twice the one of R, we can write:

{\displaystyle \frac{dV}{dt}=2 \frac{dR}{dt} }

{\displaystyle \frac{dV}{dt}=\frac{4}{3}\pi \cdot 3R^{2} \frac{dR}{dt} \Rightarrow  2\frac{dR}{dt}=\frac{4}{3}\pi \cdot 3R^{2} \frac{dR}{dt} }

We get:

{\displaystyle 2=4 \pi R^{2} \Rightarrow R=\sqrt{\frac{2}{4 \pi}} }

{\displaystyle R=\sqrt{\frac{1}{2 \pi}} }

The volume V

{\displaystyle V=\frac{4}{3}\pi R^{3}}

{\displaystyle V=\frac{4}{3}\pi \left (\sqrt{\frac{1}{2 \pi}} \right )^{3}}

{\displaystyle V=\frac{4}{3}\pi \cdot \frac{1}{2 \pi} \sqrt{\frac{1}{2 \pi}} }

{\displaystyle V=\frac{2}{3} \sqrt{\frac{1}{2 \pi}} }

Finally:

{\displaystyle R=\sqrt{\frac{3}{4 \pi}} }

{\displaystyle V=\frac{2}{3} \sqrt{\frac{1}{2 \pi}} }

 

Problem 4:

Find the equation of the tangent and the normal to the curve:

\begin{cases}x=a \cos^{4} \theta\\  y=a \sin^{4} \theta\end{cases}

At the point \theta=\frac{\pi}{4}

Solution

 We can find the \frac{dy}{dx}

\frac{dy}{d \theta}=4a\sin^{3}\theta \cdot \cos \theta

\frac{dx}{d \theta}=-4a\cos^{3}\theta \cdot \sin \theta

\frac{dy}{dx}=\frac{4a\sin^{3}\theta \cdot \cos \theta}{-4a\cos^{3}\theta \cdot \sin \theta}

\frac{dy}{dx}=-\tan^{2} \theta

At point \theta=\frac{\pi}{4}:

\frac{dy}{dx}=-\tan^{2} \frac{\pi}{4}=-1 

This is the slope of the tangent. It is clear that the slope of the normal is 1.

y=a\sin^{4}\theta=a\sin^{4}\frac{\pi}{4}=\frac{1}{4}a=\frac{a}{4}

y=a\cos^{4}\theta=a\cos^{4}\frac{\pi}{4}=\frac{1}{4}a=\frac{a}{4}

For the tangent, we know that:

y-y_{0}=m(x-x_{0})

y-\frac{a}{4}=-1(x-\frac{a}{4})

y=-x+\frac{a}{4}+\frac{a}{4}

y=-x+\frac{a}{2}

x+y=\frac{a}{2}

 

Equation of the tangent:

2x+2y-a=0

 

For the nomal we use the same method but different slope:

y-\frac{a}{4}=1(x-\frac{a}{4})

y=x-\frac{a}{4}+\frac{a}{4}

y=x

x-y=0

Equation of the normal:

x-y=0

 

Problem 5:

Water is being poured, at a rate of 10 ft^{3}/min into a leaking cylindrical cone shaped container with the top having 8 feet as diameter and which is 16 feet deep.
When the water is 12 feet deep, it was measured to be rising at a rate of 4 in/min.
How fast is the water leaking?

Solution

 

The ratio of cone height over radius is :\frac{16}{4}. The diameter is 8 feet.

We can then write:

\frac{h}{r}=4 \Rightarrow r=\frac{h}{4}

Where h is the height and r is the radius.

Let \frac{dv}{dt} be the rate of volume change at time t.

\frac{dL}{dt} be the leaking rate at time t.

\frac{df}{dt} be the filling rate at time t. It is 10 ft^{3}/min at any given time.

\frac{dh}{dt} is the rate of change of the height at any time

\frac{dv}{dt}=\frac{df}{dt}-\frac{dL}{dt}

The volume of the cone:
v=\frac{1}{3} \pi r^{2} h

But:r=\frac{h}{4}

v=\frac{1}{3} \pi \frac{h^{2}}{16}h

v=\frac{1}{48} \pi h^{3}

Taking the derivative of v with h as variable:

\frac{dv}{dt}=\frac{1}{48} \pi \cdot 3 h^{2}\frac{dh}{dt}

\frac{dv}{dt}=\frac{1}{16} \pi h^{2}\frac{dh}{dt}

\frac{dh}{dt}=4 in/min=\frac{1}{3} ft/min and h=12

\frac{dv}{dt}=\frac{1}{16} \pi 12^{2}\frac{1}{3}

\frac{dv}{dt}=\frac{144}{48} \pi=3 \pi

3 \pi=10-\frac{dL}{dt}

\frac{dL}{dt}=10- 3 \pi

Finally:

The leaking rate is (10- 3 \pi)\; ft^{3}/min

 

 

Problem 6:

Find the minimum distance from the point (4,2) to the parabola y^{2}=8x

What is the equation of the tangent of the parabola at the point of the minimum distance to (4,2)

Solution

 

For each point we use the following coordinates:

P(x, \sqrt{8x})

The distance from any point:

D^{2}=(x-x_{0})^{2}+(y-y_{0})^{2}

D^{2}=(x-4)^{2}+(\sqrt{8x}-2)^{2}

D^{2}=x^{2}-8x+16+8x-4 \sqrt{8x}+4

D^{2}=x^{2}-4 \sqrt{8x}+20

The Distance:

D=\sqrt{x^{2}-4 \sqrt{8x}+20}

\frac{dD}{dx}=\left(\sqrt{x^{2}-4 \sqrt{8x}+20} \right)'

\frac{dD}{dx}=\frac{1}{2}(x^{2}-4 \sqrt{8x}+20)^{-\frac{1}{2}}(x^{2}-4 \sqrt{8x}+20)'

\frac{dD}{dx}=\frac{2x-\frac{4}{2}(8x)^{-\frac{1}{2}}\cdot 8}{2\sqrt{x^{2}-4 \sqrt{8x}+20}}

\frac{dD}{dx}=\frac{2x\sqrt{8x}-16}{2\sqrt{8x}\sqrt{x^{2}-4 \sqrt{8x}+20}}

We can see that the equation of the distance opens up. So the first derivative test is a minimum.

We just need the numerator to be 0

2x\sqrt{8x}-16=0

x\sqrt{8x}=8

Let’s square both sides:
x^{2}\cdot 8x=8^{2}

x^{3}=8

x=2

When x=2 we can see that y=\sqrt{8x}=\sqrt{16}=4

Back to the distance to plug in x and y values:

D=\sqrt{x^{2}-4 \sqrt{8x}+20}

D_{min}=\sqrt{2^{2}-4 \sqrt{16}+20}=\sqrt{24-16}=\sqrt{8}

 

For the tangent:

y^{2}=8x

2y\frac{dy}{dx}-8\frac{dx}{dx}=0

2y\frac{dy}{dx}=8

\frac{dy}{dx}=\frac{8}{2y}

For our point y=4

The slope of the tangent is m=\frac{8}{2 \times 4}

m=1

The equation:

y-y_{0}=m(x-x_{0})

y-4=1(x-2)

y-4=x-2

y=x-2+4

y=x+2

 

Finally

D_{min}=2 \sqrt{2}

The tangent y=x+2

 

Be the first to comment

Leave a Reply

Your email address will not be published.


*