Challenge 1 Spring of 2017: Trapezoid Solution

Promoting the study of Geometry

Joining forces with institut-delbol.com, mouctar.org is publishing the first challenge.

The callenge second part is now solved. No more answers will be accepted. There was no winner for this challenge.

 

PROBLEM 2: THE TRAPEZOID

An agency is assigning the area bounded by figure ABCD to a city population.

Each member will receive an equal area of a land plot.

Calculations have shown that out of the 5160 members of the population, 2000 will receive their plots from the area covered by triangle ADC

The remaining people will be assigned plots from ABC, (See graph).

DC=1050\;m and AC=1810\:m

1. Find the area of ABCD (30\; points)

2. Verify the area of ADC using the Heron’s Formula (10\; points)

3.  What is the area, in square meters, assigned to each person? (10\; points)

 

Click this link to read the pdf file

SOLUTION: METHOD BY TRIGONOMETRY

Let AB=x

BC=d_{1}

From the right triangle \triangle ABC We have the hypothenuse AC=1810.

We have:

d_{1}=\sqrt{(1810)^{2}-x^{2}}

We also have the right triangle \triangle DFC

FC=\sqrt{(1050)^{2}-x^{2}}

Another equality:

AD=d_{2}=BF=BC-FC

We can then say:

d_{2}=\sqrt{(1810)^{2}-x^{2}}-\sqrt{(1050)^{2}-x^{2}}

 

We can also see that :

\angle BCA  \cong \angle CAD

m\angle BCA=\alpha=m\angle CAD

The area of \triangle ABC contains 3160 plots of land:

Area;\triangle ABC=3160p

Also

Area;\triangle ACD=2000p

If we use areas by angle and adjacent sides we get:

For \triangle ABC:

\frac{1}{2}\cdot BC \cdot AC \cdot \sin {\alpha}=3160p \tag{1} \label{1}

For \triangle ACD:

\frac{1}{2}\cdot AD \cdot AC \cdot \sin {\alpha}=2000p \tag{2} \label{2}

 Now let’s divide (1) by (2)

\displaystyle{\frac{\frac{1}{2}\cdot BC \cdot AC \cdot \sin {\alpha}}{\frac{1}{2}\cdot AD \cdot AC \cdot \sin {\alpha}}=\frac{3160p}{2000p}}

Simplifying we get:

\frac{BC}{AD}=\frac{3.16}{2}

OR

\frac{BC}{AD}=1.58

But d_{1}=BC and d_{2}=AD

We get:

\displaystyle{\frac{\sqrt{(1810)^{2}-x^{2}}}{\sqrt{(1810)^{2}-x^{2}}-\sqrt{(1050)^{2}-x^{2}}}=1.58}

Multiplying both members by the denominator of the left side:

\sqrt{(1810)^{2}-x^{2}}=1.58(\sqrt{(1810)^{2}-x^{2}}-\sqrt{(1050)^{2}-x^{2}})

\sqrt{(1810)^{2}-x^{2}}=1.58(\sqrt{(1810)^{2}-x^{2}})-1.58(\sqrt{(1050)^{2}-x^{2}})

(1.58-1)\sqrt{(1810)^{2}-x^{2}}=1.58\sqrt{(1050)^{2}-x^{2}}

0.58\sqrt{(1810)^{2}-x^{2}}=1.58\sqrt{(1050)^{2}-x^{2}}

\sqrt{(1810)^{2}-x^{2}}=\frac{1.58}{0.58}\sqrt{(1050)^{2}-x^{2}}

\sqrt{(1810)^{2}-x^{2}}=\frac{0.79}{0.29}\sqrt{(1050)^{2}-x^{2}}

Let k=\frac{0.79}{0.29}

We get:

\sqrt{(1810)^{2}-x^{2}}=k\sqrt{(1050)^{2}-x^{2}}

Let’s square both sides:

(1810)^{2}-x^{2}=k^{2}((1050)^{2}-x^{2})

(1810)^{2}-x^{2}=k^{2}(1050)^{2}-k^{2}x^{2}

(k^{2}-1)x^{2}=k^{2}\cdot (1050)^{2}-(1810)^{2}

\displaystyle{ x^{2}=\frac{k^{2}\cdot (1050)^{2}-(1810)^{2}}{k^{2}-1}}

\displaystyle{x=\sqrt{\frac{k^{2}\cdot (1050)^{2}-(1810)^{2}}{k^{2}-1}}}

We plugin the values:

\displaystyle{x=\sqrt{\frac{(\frac{0.79}{0.29})^{2}\cdot (1050)^{2}-(1810)^{2}}{(\frac{0.79}{0.29})^{2}-1}}}

x=874.0605963

Rounded Value here:

x=874\; m

 

Finding angles \alpha and \beta

\sin \alpha=\frac{x}{1810}

Yields

\displaystyle{\sin \alpha=\frac{874.0605963}{1810} \Leftarrow \alpha=28^{\circ}.8753967}

On the other hand, in \triangle ADC:

\displaystyle{\frac{\sin {(180^{\circ}-(\alpha+\beta))}}{1810}=\frac{\sin {\alpha}}{1050} \Rightarrow \frac{\sin {(\alpha+\beta)}}{1810}=\frac{\sin {\alpha}}{1050}}

Which gives:

\sin {(\alpha+\beta)}=\frac{1810}{1050}\sin {\alpha}

OR

\displaystyle{\displaystyle{\sin {(\alpha+\beta)}=\frac{1810}{1050}\sin {28^{\circ}.8753967} \Leftarrow (\alpha+\beta)=56^{\circ}.35006873}}

We then get

\beta=56^{\circ}.35006873-28^{\circ}.8753967

\beta=27^{\circ}.47467203

 

Areas:

Area \triangle ABC=\frac{1}{2}\cdot x \cdot AC \cdot \cos {\alpha}

Area \triangle ABC=\frac{1}{2}\times  874.0605963\times 1810 \times \cos {28^{\circ}.8753967}

Area \triangle ABC=692678.2811

Rounding:

Area \triangle ABC=692678 \;m^{2}

 

For \triangle ADC

Area \triangle ADC=\frac{1}{2}\cdot 1050 \cdot 1810 \cdot \sin {\beta}

OR

Area \triangle ADC=\frac{1}{2}\cdot 1050 \cdot 1810 \cdot \sin {27^{\circ}.47467203}

 Area \triangle ADC=438403.9754

ROUNDING

Area \triangle ADC=438404\; m^{2}

 

TOTAL\; AREA:

We add the two areas:

AREA\; ABCD=692678+438404

AREA\; ABCD=1131082\;m^{2}

 

SIZE\; OF \;THE\; PLOT:\; 5160\; plots

AREA \;PLOT=\frac{1131082}{5160}

AREA \;PLOT=219\;m^{2}

 Using the heron Formula for Area ADC

Calculating d_{2}

\displaystyle{\frac{\sin {\alpha}}{1050}=\frac{\sin {\beta}}{d_{2}} \Rightarrow d_{2}=1050 \cdot \frac{\sin {\beta}}{\sin {\alpha}}}

\displaystyle{d_{2}=1050 \cdot \frac{\sin {27^{\circ}.47467203}}{\sin {28^{\circ}.8753967}}}

d_{2}=1003.143208

The sides are: 1050, 1810, 1003.143208

Calculating s:

s=\frac{1050+1810+1003.143208}{2}

s=1931.571604

s-1050=1931.571604-1050=881.571604

s-1810=1931.571604-1810=121.571604

s-1003.143208=1931.571604-1003.143208=928.428396

Area \triangle ADC=\sqrt{1931.571604 \times 881.571604 \times 121.571604 \times 928.428396 }

Area \triangle ADC=438403.9751

ROUNDING:

Area \triangle ADC=438404\; m^{2}

 

Be the first to comment

Leave a Reply

Your email address will not be published.


*