An introduction to Complex numbers

 

 

 

 

 

Euler’s formula

 

Powers of i

i^0=1
i^1=i
i^2=-1
i^3=-i
i^4=1
i^5=i

In summary:

If n is even and n=2k, we can see that i^n=i^{2k}=(i^2)^k=(-1)^k
If n is odd and n=2k+1, we can see that i^n=i^{2k}\cdot i=(i^2)^k=(-1)^k\cdot i

Example:
i^{203} We can say that n=2k+1=203 \Rightarrow 2k=202 here k=101.
We get: i^{203}=(-1)^{101}\cdot i=-i

The polar coordinates of a complex number can be represented by a simpler form called Euler’s formula.

\cos \theta+ \sin \theta i=e^{\theta i}

This will have the following simplification:

e^{z_1+z_2}=e^{z_1}\cdot e^{z_2}

e^{z_1z_2}=(e^{z_1})^{z_2}

When r>0 we can write:

z=r\cdot e^{\theta i}

We can also have:

z_1z_2=r_1r_2e^{(\theta_1+\theta_2)i}

 If we have z=x+iy we can write:

e^{z}=e^{x}e^{iy}

Example:

e^{i\pi}=-1

e^{i\frac{\pi}{2}}=i

 

The Euler formulas:

\cos (\theta)=\frac{e^{i\theta}+e^{-i\theta}}{2}

\sin (\theta)=\frac{e^{i\theta}-e^{-i\theta}}{2i}

 

De Moivre’s theorem

If n is a positive integer, then

(\cos \theta+i\sin \theta)^{n}=\cos n\theta+i\sin n\theta

If we have:

z=r(\cos \theta+i\sin \theta)

Then:

z^n=r^n(\cos n\theta+i\sin n\theta)

Example: z^n=1

This equation will have n distinct roots:

\mathbb{C}_k=e^{\frac{2k\pi i}{n}}    with k=0,1, \cdots, n-1

 These roots are equally spaced in the unit circle.

For:

z^n=a

Let \phi be arg(z)

We write a=|a|e^{i\phi}

 

z_k=|a|^{\frac{1}{n}}e^{i(\phi+2k\pi)}

k=0,1, \cdots, n-1

 

 

Roots of a complex number

Using the skills learned from the De Moivre theorem, we can easily find the roots of complex numbers.
When n>0 and is a real number, we can find the n^{th} root of any complex number. The roots form a regular polygon and in the case of the unity, all roots lie in the unit \; circle.
Through examples, we’ll show how easy it is to calculate these roots.

Example:

Calculate the roots of:
z^2=1+i

Use two methods.

First method:

We take z=x+yi
z^2=(x+yi)^2
z^2=(x+yi)(x+yi)
z^2=x^2-y^2+2xyi

But from the prompt:z^2=1+i

We get:
x^2-y^2+2xyi=1+i

Real parts must be equal and imaginary parts must be equal.

That yields:
x^2-y^2=1 and 2xy=1

From the second equation:
2xy=1 \Rightarrow 4x^2y^2=1

But x^2-y^2=1 \Rightarrow y^2=x^2-1

We plug in:
4x^2(x^2-1)=1
4x^4-4x^2=1
4x^4-4x^2-1=0

\Delta=16+16=32

x^2=\frac{4+\sqrt{16\cdot 2}}{8}
x^2=\frac{4+4\sqrt{2}}{8}

x^2=\frac{1+\sqrt{2}}{2} the other value is less than 0
x=\pm \sqrt{\frac{1+\sqrt{2}}{2}}
2xy=1 \Rightarrow y=\frac{1}{2x}
y=\pm \frac{1}{2 \cdot \sqrt{\frac{1+\sqrt{2}}{2}}}

We can transform y:

y=\pm \frac{1}{\sqrt{2} \cdot \sqrt{1+\sqrt{2}}}

Finally our solution:

Answer: z=\pm (\sqrt{\frac{1+\sqrt{2}}{2}}+i\frac{1}{\sqrt{2} \cdot \sqrt{1+\sqrt{2}}})

 

Second method:

z^2=1+i

r=\sqrt{1^2+1^2}

r=\sqrt{2}

z^2=\sqrt{2}(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i)

The base argument is \theta=\frac{\pi}{4}

The Euler’s formula:

z^2=\sqrt{2}e^{i\frac{\pi}{4}}

For the roots:

z=(\sqrt{2})^{\frac{1}{2}}e^{i(\frac{\frac{\pi}{4}+2k\pi}{2})}

z=(\sqrt{2})^{\frac{1}{2}}e^{i(\frac{\pi}{8}+k\pi)}

For k=0

z=\sqrt{\sqrt{2}}e^{i(\frac{\pi}{8})}

z=\sqrt{\sqrt{2}}(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8})

 

 

But \frac{\pi}{4}=2\frac{\pi}{8}

We’ll see in trigonometry that:
\cos 2\theta=\cos^{2}\theta-\sin^{2}\theta

It means:
\cos \theta=\sqrt{\frac{1+\cos 2\theta}{2}}
\sin \theta=\sqrt{\frac{1-\cos 2\theta}{2}}

We know that:
\cos \frac{\pi}{4}=\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}
This gives:
z=\sqrt{\sqrt{2}}(\sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}}+i\sqrt{\frac{1-\frac{\sqrt{2}}{2}}{2}})

The real part:
When we put r under the radical:
\sqrt{\sqrt{2}}(\sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}})=\sqrt{\frac{2\sqrt{2}+\sqrt{2}\cdot \sqrt{2}}{4}}=\sqrt{\frac{1+\sqrt{2}}{2}}

The imaginary part:

When we put r under the radical:

\sqrt{\sqrt{2}}(\sqrt{\frac{1-\frac{\sqrt{2}}{2}}{2}})=\sqrt{\frac{2\sqrt{2}-\sqrt{2}\cdot \sqrt{2}}{4}}=\sqrt{\frac{\sqrt{2}-1}{2}}

Now we rationalize:
\sqrt{\frac{\sqrt{2}-1}{2}}=\sqrt{\frac{(\sqrt{2}-1)(\sqrt{2}+1)}{2(\sqrt{2}+1)}}=\sqrt{\frac{1}{2(\sqrt{2}+1)}}=\frac{1}{\sqrt{2}\sqrt{\sqrt{2}+1}}

With k=1, we get negative values but identical for both parts 

Finally:

Answer: z=\pm\left(\sqrt{\frac{1+\sqrt{2}}{2}}+i\frac{1}{\sqrt{2}\sqrt{\sqrt{2}+1}}\right)

 

Be the first to comment

Leave a Reply

Your email address will not be published.


*