An introduction to Complex numbers

 

 

 

 

Binomial theorem

In order to complete our complex numbers class, we will touch slightly the binomial theorem.
If we have to take m elements n at a time, we can write it the following way:

\binom mn=^mC_n=\frac{m!}{n!(m-n)!}

With n and m being integers and 0\leq n \leq m

As example:
\binom 42=\frac{4!}{2!(4-2)!}=6

Please note the following rules:

\binom n0=1
\binom nn=1
\binom n1=n
\binom n{n-1}=n
0!=1

This can be used to generate what we call Pascal triangle.

The binomial theorem is shown as follows:

(a+b)^n=\sum\limits_{k=0}^n \binom nk a^{n-k}b^k

 

Example1:

(a+b)^3

Here we have n=3

\binom 30=1
\binom 31=3
\binom 32=3
\binom 33=1

(a+b)^3=\binom 30 a^3b^0+\binom 31 a^2b^1+\binom 32 a^1b^2+\binom 33 a^0b^3

Finally:

(a+b)^3=a^3+3a^2b+3ab^2+b^3

 

Example2:

Find (x+y)^7

(x+y)^7=\binom 70 x^7y^0+\binom 71 x^6y^1+\binom 72 x^5y^2+\binom 73 x^4y^3+\binom 74 x^3y^4+\binom 75 x^2y^5+\binom 76 x^1y^6+\binom 77 x^0y^7

\binom 70=\frac{7!}{0!(7-0)!}=\frac{7!}{7!}=1

\binom 71=\frac{7!}{1!(7-1)!}=\frac{7\times 6!}{6!}=7

\binom 72=\frac{7!}{2!(7-2)!}=\frac{7\times 6 \times 5!}{2!\times 5!}=21

\binom 73=\frac{7!}{3!(7-3)!}=\frac{7\times 6 \times 5 \times 4!}{3!\times 4!}=35

\binom 74=\frac{7!}{4!(7-4)!}=\frac{7\times 6\times 5 \times 4!}{4!\times 3!}=35

\binom 75=\frac{7!}{5!(7-5)!}=\frac{7\times 6 \times 5!}{2!\times 5!}=21

\binom 76=\frac{7!}{6!(7-6)!}=\frac{7\times 6!}{6!}=7

\binom 77=\frac{7!}{7!(7-7)!}=\frac{7!}{7!}=1

Finally:

(x+y)^7=x^7+7 x^6y+21 x^5y^2+35 x^4y^3+35 x^3y^4+21 x^2y^5+7 xy^6+y^7

We will combine this information with the De Moivre theorem to find few trigonometric formulas.

 

Be the first to comment

Leave a Reply

Your email address will not be published.


*