An introduction to Complex numbers

Exercise:

z_1=2+5i
z_2=2-5i

Find z_1+z_2,z_1-z_2,z_1z_2 and z_1/z_2

Solution:
We notice that z_2=\overline{z_1}

z_1+z_2=2\times 2=4
z_1-z_2=2\times 5=10
z_1z_2=|z_1|=(\sqrt{2^2+5^2})^{2}=29
z_1/z_2=\frac{2+5i}{2-5i}=\frac{(2+5i)(2+5i)}{(2-5i)(2+5i)}=\frac{(4-25)+(10i+10i}{2^2-(5i)^{2}}=\frac{-21+20i}{29}=\frac{-21}{29}+\frac{20}{29}i

Finally:
z_1/z_2=\frac{-21}{29}+\frac{20}{29}i

 

Evaluate:

(1+i)^8

Solution
Let z=1+i

We try to find the polar expression:
The modulus:
|z|=\sqrt{1^2+1^2}=\sqrt{2}

Now for the argument:
if z=a+bi,

\cos \theta=\frac{a}{|z|}=\frac{1}{\sqrt{2}}

\sin \theta=\frac{b}{|z|}=\frac{1}{\sqrt{2}}

We can see that \theta=\frac{\pi}{4}

Now we can write:
z=|z|(\cos \theta+ i \sin \theta)=\sqrt{2}(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}})

Or even better:
z=\sqrt{2}e^{i\frac{\pi}{4}}

Now the fabulous De Moivre formula

z^8=(2^{\frac{1}{2}})^8e^{i\frac{8\pi}{4}}

z^8=2^{\frac{8}{2}}e^{i2\pi} But remember: -\pi<\theta \leq \pi

So we get \theta=2\pi-2\pi=0

z^8=2^{4}e^{i0}

z^8=2^{4}(\cos 0 + i \sin 0)

z^8=2^{4}(1+0i)

z^8=16

Finally:

Answer: (1+i)^8=16

 

 

Problem:

Find the 8th roots of z^8=1

Solution:

z^8=1, finding the 8 roots

Let w=z^8=1

w=1+0i

Modulus:

|w|=1

\arg(w)=0

We can write in polar form:

w=e^{i(0+2k\pi}

z=e^{i(\frac{2k\pi}{8})}=e^{i(\frac{k\pi}{4})}

k=0,1,2,3,4,5,6,7 here from 0 to n-1

The roots:

z_0=e^{i0}=(\cos 0+i\sin 0)=(1+0)=1

z_1=e^{i\frac{\pi}{4}}=(\cos \frac{\pi}{4}+ i \sin \frac{\pi}{4})=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i

z_2=e^{i\frac{2\pi}{4}}=e^{i\frac{\pi}{2}}=(\cos \frac{\pi}{2}+ i \sin \frac{\pi}{2})=0+1i=i

z_3=e^{i\frac{3\pi}{4}}=e^{i\frac{3\pi}{4}}=(\cos \frac{3\pi}{4}+ i \sin \frac{3\pi}{4})=-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i

z_4=e^{i\frac{4\pi}{4}}=e^{i\pi}=(\cos \pi+ i \sin \pi)=-1+0i=-1

z_5=e^{i\frac{5\pi}{4}}=e^{i\frac{-3\pi}{4}}=(\cos \frac{-3\pi}{4}+ i \sin \frac{-3\pi}{4})=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}i

z_6=e^{i\frac{6\pi}{4}}=e^{i\frac{-2\pi}{4}}=e^{i\frac{-\pi}{2}}=(\cos \frac{-\pi}{2}+ i \sin \frac{-\pi}{2})=0-1i=-i

z_7=e^{i\frac{7\pi}{4}}=e^{i\frac{-\pi}{4}}=(\cos \frac{-\pi}{4}+ i \sin \frac{-\pi}{4})=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}i

Finally:

Answer:1;\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i;i;-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i;-1;-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}i;-i;\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}i

 

Solve for z

z^2-(3+i)z+4+3i=0

Solution

z^2-(3+i)z+4+3i=0

\Delta=(-(3+i))^2-4(4+3i)

\Delta=(9+6i+i^2)-(16+12i)

\Delta=9+6i-1-16-12i

\Delta=-8-6i

Our challenge is to find another complex number, the \sqrt{\Delta}

Let w^2=-8-6i

The modulus:

|w|=\sqrt{(-8)^2+(-6)^2}=\sqrt{100}=10

Now:

w^2=10(-\frac{8}{10}-\frac{6}{10}i)=10(-\frac{4}{5}-\frac{3}{5}i)

Base angle:

\cos \theta=\frac{4}{5}\Leftarrow \theta=36.8699 ^\circ

From our unit circle, the with both sine and cosine <0 is base angle plus 180 degrees.

\arg(w^2)=216.8699

However, our notation -\pi<\arg(z)\leq \pi makes it \theta=-143.1301 ^{\circ}

Now:

w^2=10e^{-i143.1301}

w=\sqrt{10}e^{-\frac{i143.1301}{2}}=\sqrt{10}e^{-i71.56505}

w=\sqrt{10}(\cos (-71.56505^{\circ})+\sin (-71.56505^{\circ})i)

w=\sqrt{\Delta}=1-3i

z_1=\frac{-(-(3+i))+(1-3i)}{2}=\frac{3+i+1-3i}{2}=\frac{4-2i}{2}=2-i

z_2=\frac{-(-(3+i))-(1-3i)}{2}=\frac{3+i-1+3i}{2}=\frac{2+4i}{2}=1+2i

 

Finally:

Answer: (z_1=2-i; \; z_2=1+2i)

 

Problem:

Solve for z

z^3=-2+2i

Solution

z^3=-2+2i

Let w=z^3=-2+2i

Modulus:

|w|=\sqrt{2^2+2^2}=\sqrt{8} Please note that \sqrt{8}=2\sqrt{2}

Now the arg(w)

w=\sqrt{8}(-\frac{2}{2\sqrt{2}}+i\frac{2}{2\sqrt{2}})=\sqrt{8}(-\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}})

From the unit circle:

The base angle here is \frac{\pi}{4}

Now a combination of the trigonometric functions give \arg(w)=\frac{3\pi}{4}

We need to find 3 roots with k=0,1,2

The notation becomes:

w=z^3=\sqrt{8}e^{i\frac{3\pi}{4}}

Now:

z=((8)^{\frac{1}{2}})^{\frac{1}{3}}e^{i(\frac{\frac{3\pi}{4}+2k\pi}{3})}=\sqrt{2}e^{i(\frac{\pi}{4}+\frac{2k\pi}{3})}

The roots:

z_0=\sqrt{2}e^{i\frac{\pi}{4}}=\sqrt{2}(\cos \frac{\pi}{4}+ i \sin \frac{\pi}{4})=\frac{\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{2}}{\sqrt{2}}i=1+i

z_0=1+i

z_1=\sqrt{2}e^{i(\frac{\pi}{4}+\frac{2\pi}{3})}

Some future formulas:

\cos (\frac{\pi}{4}+\frac{2\pi}{3})=\cos (\frac{\pi}{4})\cos \frac{2\pi}{3}-\sin (\frac{\pi}{4})\sin \frac{2\pi}{3}=\frac{\sqrt{2}}{2}\cdot (\frac{-1}{2})-\frac{\sqrt{2}}{2}\cdot (\frac{\sqrt{3}}{2})=\frac{-\sqrt{2}-\sqrt{2}\sqrt{3}}{4}

\sin (\frac{\pi}{4}+\frac{2\pi}{3})=\sin (\frac{\pi}{4})\cos \frac{2\pi}{3}+\cos (\frac{\pi}{4})\sin \frac{2\pi}{3}=\frac{\sqrt{2}}{2}\cdot (\frac{-1}{2})+\frac{\sqrt{2}}{2}\cdot (\frac{\sqrt{3}}{2})=\frac{-\sqrt{2}+\sqrt{2}\sqrt{3}}{4}

z_1=\sqrt{2}(\cos (\frac{\pi}{4}+\frac{2\pi}{3})+i \sin (\frac{\pi}{4}+\frac{2\pi}{3})=\sqrt{2}((\frac{-\sqrt{2}-\sqrt{2}\sqrt{3}}{4})+i(\frac{-\sqrt{2}+\sqrt{2}\sqrt{3}}{4}))=(\frac{-1-\sqrt{3}}{2})+i(\frac{-1+\sqrt{3}}{2})

z_1=(\frac{-1-\sqrt{3}}{2})+i(\frac{-1+\sqrt{3}}{2})

For z_2 we use the transformation formulas and we get:

z_2=\sqrt{2}e^{i(\frac{\pi}{4}+\frac{4\pi}{3})}=\sqrt{2}e^{i(\frac{-5\pi}{2})}

z_2=(\frac{\sqrt{3}-1}{2})+i(\frac{-1-\sqrt{3}}{2})

 

Problem:
Evaluate (1+i)^{4}

 

Solution

This can be done 2 ways

The peasant way,
Use binomial and note that this can be lengthy if the exponent is high

(1+i)^4=1+4i+6i^2+4i^3+i^4=1+4i-6-4i+1=-4

The poet way:
Use complex numbers operations. Always try this way.
z=1+i
Modulus:
|z|=\sqrt{1^2+1^2}=\sqrt{2}

z=1+i=|z|(\cos \theta +i \sin \theta)=\sqrt{2}(\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}})

The base angle: \theta=\frac{\pi}{4} and is also the \arg(z)
z=\sqrt{2}e^{i\frac{\pi}{4}}
z^4=(2)^{\frac{1}{2}\cdot 4}e^{i\frac{4\pi}{4}}

z^4=(2)^{2}e^{i\pi}

z^4=4(cos \pi+ i\sin \pi)=4(-1+ i\cdot 0)=-4

Finally:
Answer: (1+i)^4=-4

 

Problem:
Evaluate (1+2i)(3-i)

Solution

(1+2i)(3-i)=1\cdot 3+1\cdot(-i)+(2i)\cdot 3-(2i)\cdot (-i)=3-i+6i-2i^2=5+5i

The second method, more efficient for multiple comple numbers.

|1+2i|=\sqrt{5}
1+2i=\sqrt{5}(\frac{1}{\sqrt{5}}+i\frac{2}{\sqrt{5}})

Base angle
\theta_1=\cos ^{-1}\frac{1}{\sqrt{5}}=63.435^{\circ}
With the sine showing >0, we are in the first quadrant of the unit circle.
So, \arg(1+2i)=63.435^{\circ}

|3-i|=\sqrt{10}
3-i=\sqrt{10}(\frac{3}{\sqrt{10}}-i\frac{1}{\sqrt{10}})

Base angle
\theta_1=\cos ^{-1}\frac{3}{\sqrt{10}}=18.435^{\circ}
With the sine showing <0, we are in the fourth quadrant of the unit circle.
So, \arg(3-i)=-18.435^{\circ}

The product:

(1+2i)(3-i)=\sqrt{5} \sqrt{10}e^{i(63.435^{\circ}+(-18.435^{\circ}))}

(1+2i)(3-i)=\sqrt{50}e^{i45^{\circ}}=\sqrt{50}(\cos 45^{\circ} +i \sin 45^{\circ})=5+5i

Answer: (1+2i)(3-i)=5+5i

 

Problem:
Evaluate \frac{1+2i}{3-i}

Solution

Two methods:

The first method
\frac{1+2i}{3-i}=\frac{(1+2i)(3+i)}{(3-i)(3+i)}=\frac{3+i+6i-2}{9+1}=\frac{1}{10}+i\frac{7}{10}

The second method, more efficient for multiple complex numbers.

|1+2i|=\sqrt{5}
1+2i=\sqrt{5}(\frac{1}{\sqrt{5}}+i\frac{2}{\sqrt{5}})

Base angle
\theta_1=\cos ^{-1}\frac{1}{\sqrt{5}}=63.435^{\circ}
With the sine showing >0, we are in the first quadrant of the unit circle.
So, \arg(1+2i)=63.435^{\circ}

|3-i|=\sqrt{10}
3-i=\sqrt{10}(\frac{3}{\sqrt{10}}-i\frac{1}{\sqrt{10}})

Base angle
\theta_1=\cos ^{-1}\frac{3}{\sqrt{10}}=18.435^{\circ}
With the sine showing <0, we are in the fourth quadrant of the unit circle.
So, \arg(3-i)=-18.435^{\circ}

\frac{1+2i}{3-i}=\frac{\sqrt{5}}{\sqrt{10}}e^{i(63.435^{\circ}-(-18.435^{\circ}))}
\frac{1+2i}{3-i}=\frac{\sqrt{5}}{\sqrt{10}}e^{i81.870^{\circ}}=\frac{1}{10}+i \frac{7}{10}

Answer: \frac{1+2i}{3-i}=\frac{1}{10}+i \frac{7}{10}

 

Problem:
Evaluate z=\left(\frac{1-i}{\sqrt{2}}\right)^{-6}

Solution

z=\left(\frac{1-i}{\sqrt{2}}\right)^{-6}

For the conjugate we know:

\frac{1}{w}=\frac{\overline{w}}{|w|}

Let \overline{w}=\frac{1-i}{\sqrt{2}}=\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}

The values of the angle are exposed

We know that the modulus |w|=|\overline{w}|

|w|=\sqrt{(\frac{1}{\sqrt{}2})^{2}+(\frac{1}{\sqrt{}2})^{2}}=1

That means:

w=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}

\left(\overline{w}\right)^{-6}=\left(\frac{w}{|w|^2}\right)^6

This brings home:

z=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^6

Regular calculation:

w=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}

Modulus |w|=1 and base angle: \arg(w)=\frac{\pi}{4} since we are in first quadrant.

z=e^{i\frac{6\pi}{4}}=e^{i\frac{3\pi}{2}} But remember -\pi<\theta \leq \pi

That means:

z=e^{-i\frac{\pi}{2}}=\cos \frac{-\pi}{2}+i \sin \frac{-\pi}{2}=0-i=-i

Finally

Answer: z=-i

 

 

Exercise 27C (From EARL):

Let \xi=cos \frac{2\pi}{5}+i \sin \frac{2\pi}{5}

Show that \xi^5=1 and deduce that 1+\xi+\xi^2+\xi^3+\xi^4=0

Find the quadratic equation with the roots \xi+\xi^4 and \xi^2+\xi^3.

Hence show that \cos \frac{2\pi}{5}=\frac{\sqrt{5}-1}{4}

Our Approach and solution:

In the polar coordinates:

\xi=e^{i\frac{2\pi}{5}}

\xi^5=1 \Rightarrow \xi^5-1=0

We know that:

x^n-1=(x-1)(1+x+x^2+\cdots+x^{n-1})

This means:

\xi^{5}-1=(\xi-1)(1+\xi+\xi^2+\xi^3+\xi^4)

To get 5 roots reals and complex, both factors must be equal to 0

We get:

(1+\xi+\xi^2+\xi^3+\xi^4)=0

To find the roots of the quadratic, let’s evaluate each element:

With in mind the argument -\pi<\theta \leq \pi

\xi=e^{i\frac{2\pi}{5}}

\xi^{2}=e^{i\frac{4\pi}{5}}

\xi^{3}=e^{i\frac{6\pi}{5}}=e^{i\frac{-4\pi}{5}}

\xi^{4}=e^{i\frac{8\pi}{5}}=e^{i\frac{-2\pi}{5}}

The roots are:

\xi+\xi^4 and \xi^2+\xi^3

The product:

(\xi+\xi^4)(\xi^2+\xi^3)=(e^{i\frac{2\pi}{5}}+e^{i\frac{-2\pi}{5}})(e^{i\frac{4\pi}{5}}+e^{i\frac{-4\pi}{5}}

(\xi+\xi^4)(\xi^2+\xi^3)=e^{i\frac{2\pi}{5}}+e^{i\frac{4\pi}{5}}+e^{i\frac{-4\pi}{5}}+e^{i\frac{-2\pi}{5}}

This means we can change the following:

(1+\xi+\xi^2+\xi^3+\xi^4)=0 to:

e^{i\frac{2\pi}{5}}+e^{i\frac{4\pi}{5}}+e^{i\frac{-4\pi}{5}}+e^{i\frac{-2\pi}{5}}=0

2\cos \frac{2\pi}{5}+2\cos \frac{4\pi}{5}+1=0

When we convert:

2\cos \frac{2\pi}{5}+4\cos^{2} \frac{2\pi}{5}-2+1=0

4\cos^{2} \frac{2\pi}{5}+2\cos \frac{2\pi}{5}-1=0

Let \cos \frac{2\pi}{5}=x

4x^{2}+2x-1=0

\Delta=2^2-4(4)(-1)=20
\sqrt{\Delta}=\sqrt{20}=2\sqrt{5}

Before we go further, please note that x>0 since our angle is the first quadrant.

x=\frac{-2+2\sqrt{5}}{8}=\frac{\sqrt{5}-1}{4}

Finally:

Answer: \cos \frac{2\pi}{5}=\frac{\sqrt{5}-1}{4}

 

 

Exercise 28C (EARL)

Determine the modulus and argument of the following complex numbers:

i+i and \sqrt{3}+i.

Calculate \frac{1+i}{\sqrt{3}+i} using polar coordinates and a+bi form.

Deduce the \sin \frac{\pi}{12} and \cos \frac{\pi}{12}.

Our Solution:

z_1=1+i

modulus:

|z_1|=\sqrt{1+1}=\sqrt{2}

z_1=\sqrt{2}(\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}})

arg(z_1)=\frac{\pi}{4}

z_1=\sqrt{2}e^{i\frac{\pi}{4}}

z_2=\sqrt{3}+i

modulus:

|z_2|=\sqrt{3+1}=\sqrt{4}=2

z_2=2(\frac{\sqrt{3}}{2}+i\frac{1}{2})

arg(z_2)=\frac{\pi}{3}

z_2=\sqrt{2}e^{i\frac{\pi}{3}}

Now Calculating \frac{1+i}{\sqrt{3}+i}

\frac{1+i}{\sqrt{3}+i}=\frac{(1+i)(\sqrt{3}-i)}{(\sqrt{3}+i)(\sqrt{3}-i)}

\frac{1+i}{\sqrt{3}+i}=\frac{\sqrt{3}+1-i+\sqrt{3}i}{3+1}=\frac{\sqrt{3}+1}{4}+i\frac{\sqrt{3}-1}{4}

In polar form:

\frac{z_1}{z_2}=\frac{\sqrt{2}}{2}e^{i(\frac{\pi}{4}-\frac{\pi}{3})}=\frac{\sqrt{2}}{2}e^{-i\frac{\pi}{12}}

\frac{z_1}{z_2}=\frac{\sqrt{2}}{2}(cos (-\frac{\pi}{12})+i \sin (-\frac{\pi}{12}))

\frac{z_1}{z_2}=\frac{\sqrt{2}}{2}(cos (-\frac{\pi}{12})+i\frac{\sqrt{2}}{2}\sin (-\frac{\pi}{12}))

Now we can say:

\frac{\sqrt{2}}{2}(cos (-\frac{\pi}{12}))=\frac{\sqrt{3}+1}{4}

cos \frac{\pi}{12}=\frac{2}{\sqrt{2}}\cdot \frac{\sqrt{3}+1}{4}=\frac{\sqrt{3}+1}{2\sqrt{2}}

\frac{\sqrt{2}}{2}\sin (-\frac{\pi}{12})=\frac{\sqrt{3}-1}{4}

\frac{\sqrt{2}}{2}\sin (\frac{\pi}{12})=\frac{1-\sqrt{3}}{4}

\sin \frac{\pi}{12}=\frac{2}{\sqrt{2}}\cdot \frac{1-\sqrt{3}}{4}=\frac{1-\sqrt{3}}{2\sqrt{2}}

Finally

Answer: \sin \frac{\pi}{12}=\frac{1-\sqrt{3}}{2\sqrt{2}} and \cos \frac{\pi}{12}=\frac{\sqrt{3}+1}{2\sqrt{2}}

 

Exercise 30 B (EARL):

Using the 7th roots of -1 show that:

\cos \frac{\pi}{7}+\cos \frac{3\pi}{7}+\cos \frac{7\pi}{7}=\frac{1}{2}

Use a similar process to evaluate:

\cos \frac{2\pi}{7}+\cos \frac{4\pi}{7}+\cos \frac{6\pi}{7}

Solution:

w=z^7=-1

Modulus:
|w|=1

Argument:
\cos \theta=-1 and \sin \theta=0 \Leftarrow \theta=\pi

This means \arg(w)=\pi

w=e^{i\pi}

The 7th roots:

z=e^{i(\frac{\pi+2k\pi}{7})} with k=0,1,2,3,4,5,6

 

z=e^{i(\frac{\pi}{7}+{2k\pi}{7})}

z_1=e^{i(\frac{\pi}{7}+{0\times 2\pi}{7})}=e^{i\frac{\pi}{7}}

z_2=e^{i(\frac{\pi}{7}+{1\times 2\pi}{7})}=e^{i\frac{3\pi}{7}}

z_3=e^{i(\frac{\pi}{7}+{2\times 2\pi}{7})}=e^{i\frac{5\pi}{7}}

z_4=e^{i(\frac{\pi}{7}+{3\times 2\pi}{7})}=e^{i\pi}

z_5=e^{i(\frac{\pi}{7}+{4\times 2\pi}{7})}=e^{-i\frac{5\pi}{7}}

z_6=e^{i(\frac{\pi}{7}+{5\times 2\pi}{7})}=e^{-i\frac{3\pi}{7}}

z_7=e^{i(\frac{\pi}{7}+{6\times 2\pi}{7})}=e^{-i\frac{\pi}{7}}

Sum of roots is 0

2\cos \frac{\pi}{7}+2\cos \frac{3\pi}{7}+2\cos \frac{7\pi}{7}-1=0

This yields:

\cos \frac{\pi}{7}+\cos \frac{3\pi}{7}+2\cos \frac{7\pi}{7}=\frac{1}{2}

The same way, if we let:

z^7=1 we get the following:

\cos \frac{2\pi}{7}+\cos \frac{4\pi}{7}+\cos \frac{6\pi}{7}=-\frac{1}{2}

Finally:

\cos \frac{\pi}{7}+\cos \frac{3\pi}{7}+2\cos \frac{7\pi}{7}=\frac{1}{2}

\cos \frac{2\pi}{7}+\cos \frac{4\pi}{7}+\cos \frac{6\pi}{7}=-\frac{1}{2}

 

Solve for z

z^2+\frac{1}{2}z+\frac{1}{4}=0

[accordion hideSpeed=”300″ showSpeed=”400″]

[item title=”Click here to see the solution of: z^2+\frac{1}{2}z+\frac{1}{4}=0“]

Solution:

z^2+\frac{1}{2}z+\frac{1}{4}=0

\Delta=\left(\frac{1}{2}\right)^{2}-4\times 1 \times\frac{1}{4}=-\frac{3}{4}=i^{2}\frac{3}{4}

\sqrt{\Delta}=\frac{3}{2}i

Finally:

Answer: z=-\frac{1}{4}\pm \frac{\sqrt{3}}{4}i

[/item] [/accordion]

 

Solve z^3=i

Draw the roots and calculate the area of the triangle formed by the three roots.

Solution:

Modulus:

|z^3|=1

Z^3=0+i

z^3=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}

\arg(z^3)=\frac{\pi}{2}

z^3=e^{i\frac{\pi}{2}}

z=e^{i(\frac{\frac{\pi}{2}+3k\pi}{3})}=e^{i(\frac{\pi}{6}+\frac{2k\pi}{3})}

z_1=e^{i\frac{\pi}{6}}= \cos \frac{\pi}{6}+ i \sin \frac{\pi}{6}=\frac{\sqrt{3}}{2}+ \frac{1}{2}i

z_2=e^{i(\frac{\pi}{6}+\frac{2\pi}{3})}=e^{i\frac{5\pi}{6}}= \cos \frac{5\pi}{6}+ i \sin \frac{5\pi}{6}=-\frac{\sqrt{3}}{2}+ \frac{1}{2}i

z_3=e^{i(\frac{\pi}{6}+\frac{4\pi}{3})}=e^{i\frac{-\pi}{2}}=\cos \frac{-\pi}{2}+ i \sin \frac{-\pi}{2}=0-i=-i

 

Finally:

Answers: z=(\frac{\sqrt{3}}{2}+ \frac{1}{2}i,\;-\frac{\sqrt{3}}{2}+ \frac{1}{2}i,\;-i)

 

 

Write in a+bi form:

z=e^{\pi+i}

Solution:

z=e^{\pi}e^{i\cdot 1}

Please note 1 is 1 radian or \frac{180}{\pi} in degrees.

So:

z=e^{\pi}(\cos \frac{180}{\pi}+\sin \frac{180}{\pi}i)=12.50+19.47i

 

Finally:

Answer: z=12.50+19.47i

Be the first to comment

Leave a Reply

Your email address will not be published.


*