Al-Kashi, Heron,Bretschneider’s, Brahmagupta’s and Coolidge formulas

The Bretscheiner’s formula helps find the area of a non-cyclic quadrilateral, that cannot be inscribed in a circle,

using only side lengths and possibly one angle measure or one diagonal length.

After the Bretschneider’s formula, we’ll simplify the quadrilateral to make it cyclic. We’ll get the Brahmagupta’s formula.

With the cyclic quadrilateral the product of the diagonals e and f is ef=ac+bd and opposite angles are supplementary.

Let K be area.

From the figure, we notice K=A_{ABD}+A_{DCB}

K=\frac{1}{2}ad \sin \alpha+ \frac{1}{2}bc \sin \phi

2K=ad \sin \alpha+ bc \sin \phi

Squaring both sides:

4K^{2}=(ad)^{2} \sin^{2} \alpha+ (bc)^{2} \sin^2 \phi+ 2adbc \sin \alpha \sin \phi

4K^{2}=(ad)^{2} \sin^{2} \alpha+ (bc)^{2} \sin^2 \phi+ 2adbc \sin \alpha \sin \phi  (1)

Now let’s check 2 values of diagonal e:

e^{2}=a^{2}+d^{2}-2ad \cos \alpha

e^{2}=b^{2}+c^{2}-2bc \cos \phi

a^{2}+d^{2}-2ad \cos \alpha=b^{2}+c^{2}-2bc \cos \phi

a^{2}+d^{2}-b^{2}-c^{2}=2ad \cos \alpha-2bc \cos \phi

\frac{a^{2}+d^{2}-b^{2}-c^{2}}{2}=ad \cos \alpha-bc \cos \phi

Taking the square:

\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad)^{2} \cos^{2} \alpha+(bc)^{2} \cos^{2} \phi-2abcd \cdot \cos \phi \cdot \cos \alpha  (2)

Adding (1) and (2):

4K^{2}+\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad)^{2}(\sin^{2} \alpha+\cos^{2} \alpha)+(bc)^{2}(\sin^{2} \phi+\cos^{2} \phi)+ 2adbc \cdot \sin \alpha \sin \phi -2abcd \cdot \cos \alpha \cos \phi

4K^{2}+\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad)^{2}+ (bc)^{2}- 2adbc \cdot \cos (\alpha + \phi)

4K^{2}+\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad +bc)^{2}-2adbc- 2adbc \cdot \cos (\alpha + \phi)

4K^{2}+\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad +bc)^{2}- 2adbc \cdot( \cos (\alpha + \phi)+1)

4K^{2}+\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad +bc)^{2}- 4adbc(\frac{\cos (\alpha + \phi)+1}{2}) Injected 2 in the last term.

4K^{2}+\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad +bc)^{2}- 4adbc \cdot \cos^{2} (\frac{\alpha + \phi}{2})

To the same denominator and multiplying both sides by 4:

16K^{2}=4(ad +bc)^{2}-(a^{2}+d^{2}-b^{2}-c^{2})^{2}- 16adbc \cdot \cos^{2} (\frac{\alpha + \phi}{2})

16K^{2}=[4(ad +bc)^{2}]-[(a^{2}+d^{2}-b^{2}-c^{2})^{2}]- 16adbc \cdot \cos^{2} (\frac{\alpha + \phi}{2})

16K^{2}=[4(ad +bc)^{2}]-[(a^{2}+d^{2}-b^{2}-c^{2})^{2}]- 16adbc \cdot \cos^{2} (\frac{\alpha + \phi}{2})

16K^{2}=(2ad +2bc+a^{2}+d^{2}-b^{2}-c^{2})(2ad +2bc-a^{2}-d^{2}+b^{2}+c^{2})- 16adbc \cdot\cos^{2} (\frac{\alpha + \phi}{2})

16K^{2}=(a^{2}+2ad+d^{2}-(b^{2}-2bc+c^{2}))(-a^{2}+2ad-d^{2}+(b^{2}+2bc+c^{2}))- 16adbc \cdot \cos^{2} (\frac{\alpha + \phi}{2})

16K^{2}=((a+d)^{2}-(b-c)^{2})((b+c)^{2}-(a-d)^{2})- 16adbc \cdot\cos^{2} (\frac{\alpha + \phi}{2})

16K^{2}=(a+d+b-c)(a+d-b+c)(b+c+a-d)(b+c-a+d)- 16adbc \cdot\cos^{2} (\frac{\alpha + \phi}{2})

K^{2}=\frac{b+c+d-a}{2}\cdot \frac{a+c+d-b}{2}\cdot \frac{a+b+d-c}{2}\cdot \frac{a+b+c-d}{2}- adbc\cdot \cos^{2} (\frac{\alpha + \phi}{2})

\boxed {K=\sqrt{\frac{b+c+d-a}{2}\cdot \frac{a+c+d-b}{2}\cdot \frac{a+b+d-c}{2}\cdot \frac{a+b+c-d}{2}- adbc\cdot \cos^{2} (\frac{\alpha + \phi}{2})}}

If we call the semi-perimeter s=\frac{a+b+c+d}{2}

 

We have the final Bretscheiner’s formula:

\boxed {K=\sqrt{(s-a)(s-b)(s-c)(s-d)-adbc\cdot \cos^{2} (\frac{\alpha + \phi}{2})}}

 

Brahmagupta’s formula

The steps remain the same but this time since the quadrilateral is CYCLIC we know that the two opposite angles are supplementary.

\cos \frac{\pi}{2}=0

We get from the Bretscheiner’s formula

\boxed {K=\sqrt{(s-a)(s-b)(s-c)(s-d)}}

 

Heron’s formula

The fourth side goes away and we get a triangle. From Brahmagupta’s formula:

\boxed {K=\sqrt{s(s-a)(s-b)(s-c)}}

 

 

In depth explanation:

From Al-Kashi to Bretshneider via Heron and Brahmagupta, we are going to go through some of their work:

Al-kashi is simply the Law of Cosines:

Law of cosines:

From what we know:
\cos{A}=\frac{AD}{c} \Rightarrow AD=c\cdot \cos{A}
We have two right triangles: \triangle{ADB} and \triangle{CDB}
Using the Pythagorean Theorem:
{h}^2={c}^2-{AD}^2
Also:
{h}^2={a}^2-{DC}^2
{a}^2-{DC}^2={c}^2-{AD}^2
But :
\overline{AC}=\overline{AD}+\overline{DC} \Rightarrow \overline{DC}=\overline{AC}-\overline{AD}
This means:
DC=AC-AD=b-AD
{a}^2-{b-AD}^2={c}^2-{AD}^2
{a}^2-({b}^2-2 \cdot b \cdot AD+{AD}^2) ={c}^2-{AD}^2
{a}^2-{b}^2+2 \cdot b \cdot AD-{AD}^2={c}^2-{AD}^2
{a}^2-{b}^2+2 \cdot b \cdot (AD)={c}^2
We know from above: AD=c\cdot\cos{A}
{a}^2-{b}^2+2 \cdot b \cdot c\cdot\cos{A}={c}^2
Finally we have the Law \;of\; cosines:

{a}^2={b}^2+{c}^2-2 \cdot b \cdot c\cdot\cos{A}

{b}^2={a}^2+{c}^2-2 \cdot a \cdot c\cdot\cos{B}

{c}^2={a}^2+{b}^2-2 \cdot a \cdot b\cdot\cos{C}

Heron Formula:

This one is widely used. We use it when we have only sides and we want to find the Area of the triangle

LetS be area and s=\frac{a+b+c}{2} the semi-perimeter.

S=\frac{1}{2}bc \sin A.

We should remember this because we’ll need it in the following paragraphs.

\sin A=\frac{2S}{bc}

a^2=b^2+c^2-2bc \cos A \Rightarrow \cos A=\frac{b^2+c^2-a^2}{2bc}

But we know that:

\sin^{2} A+ \cos^{2} A=1

(\frac{2S}{bc})^{2}+(\frac{b^2+c^2-a^2}{2bc})^{2}=1

\frac{4S^{2}}{b^{2}c^{2}}+\frac{(b^2+c^2-a^2)^{2}}{4b^{2}c^{2}}=1

\frac{4\times 4S^{2}}{4 \times b^{2}c^{2}}+\frac{(b^2+c^2-a^2)^{2}}{4b^{2}c^{2}}=\frac{4b^{2}c^{2}}{4b^{2}c^{2}}

16S^{2}=4b^{2}c^{2}-(b^2+c^2-a^2)^{2}

This is a difference of squares, we can factor:

16S^{2}=(2bc+b^2+c^2-a^2)(2bc-b^2-c^2+a^2)

16S^{2}=[(b+c)^2-a^2][a^2-(b-c)^{2}]

16S^{2}=(b+c-a)(b+c+a)(a+b-c)(a+c-b)

16S^{2}=(b+c-a)(b+c+a)(a+b-c)(a+c-b)

16S^{2}=(a+b+c)(b+c-a)(a+c-b)(a+b-c)

S^{2}=\frac{(a+b+c)}{2}\frac{(b+c-a)}{2}\frac{(a+c-b)}{2}\frac{(a+b-c)}{2}

S=\sqrt{s(s-a)(s-b)(s-c)}

This is the Heron formula:

\boxed{S=\sqrt{s(s-a)(s-b)(s-c)}}

The Bretschneider formula:

 

 We will demonstrate the following forms of the Area K per BRETSCHNEIDER

K=\frac{1}{2}pq \sin \theta

K=\frac{1}{4}(b^{2}+d^{2}-a^{2}-c^{2}) \tan \theta

K=\frac{1}{4}\sqrt{4p^{2}q^{2}-(b^{2}+d^{2}-a^{2}-b^{2})^{2}}

We split the diagonal p into (p-y) and y

The same way for q: (q-x) and x

We express the area of the four triangles:

A_1=\frac{1}{2}xy \sin \theta

A_2=\frac{1}{2}x(p-y) \sin \theta

A_3=\frac{1}{2}(p-y)(q-x) \sin \theta

A_4=\frac{1}{2}(q-x)y \sin \theta

Now we add all four areas:

A_{ABCD}=A_1+A_2+A_3+A_4

A_{ABCD}=(\frac{1}{2}xy+\frac{1}{2}px-\frac{1}{2}xy+\frac{1}{2}pq-\frac{1}{2}px-\frac{1}{2}qy+\frac{1}{2}xy+\frac{1}{2}qy-\frac{1}{2}xy) \sin \theta

After simplication:

A_{ABCD}=\frac{1}{2}pq \sin \theta

The first form:

\boxed{K=\frac{1}{2}pq \sin \theta}

 

Now the second form:

From the figure:

c^{2}=x^{2}+y^{2}-2xy \cos \theta  (1)

a^{2}=(p-y)^{2}+(q-x)^{2}-2(p-y)(q-x)\cos \theta

a^{2}=p^{2}-2py+y^{2}+q^{2}-2qx+x^{2}-(pq-px-qy+xy)\cdot 2\cos \theta

We expand and replace terms in (1) by c^{2}

 

a^{2}=p^{2}+c^{2}+q^{2}-2py-2qx-2pq\cos \theta+2px \cos \theta+ 2qy \cos \theta

 

Now we move to the b^{2}

b^{2}=(p-y)^{2}+x^{2}+2(p-y)x \cos \theta

b^{2}=p^{2}-2py+y^{2}+x^{2}+2px \cos \theta-2xy \cos \theta

We expand and replace terms in (1) by c^{2}

b^{2}=p^{2}-2py+c^{2}+2px \cos \theta

 

Now we move to the d^{2}

d^{2}=(q-x)^{2}+y^{2}+2(q-x)y \cos \theta

d^{2}=q^{2}-2qx+x^{2}+y^{2}+2qy\cos \theta-2xy \cos \theta

d^{2}=q^{2}-2qx+c^{2}+2qy \cos \theta

 

Let’s add as follows:

b^{2}+d^{2}-a^{2}-c^{2}=

=p^{2}-2py+c^{2}+2px \cos \theta+q^{2}-2qx+c^{2}+2qy \cos \theta-p^{2}-c^{2}-q^{2}+2py+2qx+2pq\cos \theta

-2px \cos \theta- 2qy \cos \theta-c^{2}

After simplification we get:

b^{2}+d^{2}-a^{2}-c^{2}=2pq \cos \theta \Rightarrow pq=\frac{b^{2}+d^{2}-a^{2}-c^{2}}{2\cos \theta}

But:

K=\frac{1}{2}pq \sin \theta

We plug in pq

K=\frac{1}{4}(b^{2}+d^{2}-a^{2}-b^{2}) \tan \theta

 

Second Form:

\boxed{K=\frac{1}{4}(b^{2}+d^{2}-a^{2}-c^{2}) \tan \theta}

 

 Third form:

From the sequences above:

 

K=\frac{1}{2}pq \sin \theta

 

But: \sin \theta=\sqrt{1- \cos^{2} \theta}

 

K=\frac{1}{2}pq\sqrt{1-(\frac{b^{2}+d^{2}-a^{2}-c^{2}}{2pq})^{2}}

K=\frac{1}{2}pq\sqrt{1-\frac{(b^{2}+d^{2}-a^{2}-c^{2})^{2}}{4p^{2}q^{2}}}

K=\frac{1}{2}\sqrt{p^{2}q^{2}-p^{2}q^{2}\frac{(b^{2}+d^{2}-a^{2}-c^{2})^{2}}{4p^{2}q^{2}}}

 K=\frac{1}{4}\sqrt{4p^{2}q^{2}-(b^{2}+d^{2}-a^{2}-c^{2})^{2}}

 

This is the actual BRETSCHNEIDER formula:

\boxed{K=\frac{1}{4}\sqrt{4p^{2}q^{2}-(b^{2}+d^{2}-a^{2}-c^{2})^{2}}}

 

According to wiki, the following work is credited to COOLIDGE in 1939:

Let K be area.

From the figure, we notice K=A_{ABD}+A_{DCB}

K=\frac{1}{2}ad \sin \alpha+ \frac{1}{2}bc \sin \phi

2K=ad \sin \alpha+ bc \sin \phi

Squaring both sides:

4K^{2}=(ad)^{2} \sin^{2} \alpha+ (bc)^{2} \sin^2 \phi+ 2adbc \sin \alpha \sin \phi

4K^{2}=(ad)^{2} \sin^{2} \alpha+ (bc)^{2} \sin^2 \phi+ 2adbc \sin \alpha \sin \phi  (1)

Now let’s check 2 values of diagonal e:

e^{2}=a^{2}+d^{2}-2ad \cos \alpha

e^{2}=b^{2}+c^{2}-2bc \cos \phi

a^{2}+d^{2}-2ad \cos \alpha=b^{2}+c^{2}-2bc \cos \phi

a^{2}+d^{2}-b^{2}-c^{2}=2ad \cos \alpha-2bc \cos \phi

\frac{a^{2}+d^{2}-b^{2}-c^{2}}{2}=ad \cos \alpha-bc \cos \phi

Taking the square:

\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad)^{2} \cos^{2} \alpha+(bc)^{2} \cos^{2} \phi-2abcd \cdot \cos \phi \cdot \cos \alpha  (2)

Adding (1) and (2):

4K^{2}+\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=

=(ad)^{2}(\sin^{2} \alpha+\cos^{2} \alpha)+(bc)^{2}(\sin^{2} \phi+\cos^{2} \phi)+ 2adbc \cdot \sin \alpha \sin \phi -2abcd \cdot \cos \alpha \cos \phi

4K^{2}+\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad)^{2}+ (bc)^{2}- 2adbc \cdot \cos (\alpha + \phi)

4K^{2}+\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad +bc)^{2}-2adbc- 2adbc \cdot \cos (\alpha + \phi)

4K^{2}+\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad +bc)^{2}- 2adbc \cdot( \cos (\alpha + \phi)+1)

4K^{2}+\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad +bc)^{2}- 4adbc(\frac{\cos (\alpha + \phi)+1}{2}) Injected 2 in the last term.

4K^{2}+\frac{(a^{2}+d^{2}-b^{2}-c^{2})^{2}}{4}=(ad +bc)^{2}- 4adbc \cdot \cos^{2} (\frac{\alpha + \phi}{2})

To the same denominator and multiplying both sides by 4:

16K^{2}=4(ad +bc)^{2}-(a^{2}+d^{2}-b^{2}-c^{2})^{2}- 16adbc \cdot \cos^{2} (\frac{\alpha + \phi}{2})

16K^{2}=[4(ad +bc)^{2}]-[(a^{2}+d^{2}-b^{2}-c^{2})^{2}]- 16adbc \cdot \cos^{2} (\frac{\alpha + \phi}{2})

16K^{2}=[4(ad +bc)^{2}]-[(a^{2}+d^{2}-b^{2}-c^{2})^{2}]- 16adbc \cdot \cos^{2} (\frac{\alpha + \phi}{2})

16K^{2}=(2ad +2bc+a^{2}+d^{2}-b^{2}-c^{2})(2ad +2bc-a^{2}-d^{2}+b^{2}+c^{2})- 16adbc \cdot\cos^{2} (\frac{\alpha + \phi}{2})

16K^{2}=(a^{2}+2ad+d^{2}-(b^{2}-2bc+c^{2}))(-a^{2}+2ad-d^{2}+(b^{2}+2bc+c^{2}))- 16adbc \cdot \cos^{2} (\frac{\alpha + \phi}{2})

16K^{2}=((a+d)^{2}-(b-c)^{2})((b+c)^{2}-(a-d)^{2})- 16adbc \cdot\cos^{2} (\frac{\alpha + \phi}{2})

16K^{2}=(a+d+b-c)(a+d-b+c)(b+c+a-d)(b+c-a+d)- 16adbc \cdot\cos^{2} (\frac{\alpha + \phi}{2})

K^{2}=\frac{b+c+d-a}{2}\cdot \frac{a+c+d-b}{2}\cdot \frac{a+b+d-c}{2}\cdot \frac{a+b+c-d}{2}- adbc\cdot \cos^{2} (\frac{\alpha + \phi}{2})

\boxed {K=\sqrt{\frac{b+c+d-a}{2}\cdot \frac{a+c+d-b}{2}\cdot \frac{a+b+d-c}{2}\cdot \frac{a+b+c-d}{2}- adbc\cdot \cos^{2} (\frac{\alpha + \phi}{2})}}

If we call the semi-perimeter s=\frac{a+b+c+d}{2}

We have the final COOLIDGE formula:

\boxed {K=\sqrt{(s-a)(s-b)(s-c)(s-d)-adbc\cdot \cos^{2} (\frac{\alpha + \phi}{2})}}

 

 

External links:

http://www.planetmath.org

Be the first to comment

Leave a Reply

Your email address will not be published.


*