Exercise 3_20

Find the solution of:
\sqrt{3-2x}=3-\sqrt{2x+2}

Solution:
\sqrt{3-2x}=3-\sqrt{2x+2}

Let’s square the two sides:
We get:

(\sqrt{3-2x})^{2}=(3-\sqrt{2x+2})^{2}
(3-2x)=9-6\sqrt{2x+2}+(2x+2)
3-2x=9-6\sqrt{2x+2}+2x+2
Adding similar terms we get:
3-9-2-2x-2x=-6\sqrt{2x+2}
-8-4x=-6\sqrt{2x+2}

Multiplying both sides by -\frac{1}{2}
2x+4=3\sqrt{2x+2}

Let’s square both sides another time:

(2x+4)^{2}=(3\sqrt{2x+2})^{2}

4x^{2}+16x+16=9(2x+2)

4x^{2}+16x+16=18x+18

Divide by 2:
2x^{2}+8x+8=9x+9
2x^{2}+8x+8-9x-9=0
2x^{2}+8x-9x+8-9=0
2x^{2}-x-1=0

Let’s factor:
2x^{2}-2x+x-1=0
(2x(x-1)+1(x-1)=0
(2x+1)(x-1)=0
The equality is true if any factor is zero.
2x+1=0 \Rightarrow x=-\frac{1}{2}

The same way:
x-1=0 \Rightarrow x=1

If we plugin we verify that both roots are valid:

Finally:
The solution set is:

\mathbf{\{-\frac{1}{2},{1}\}}

Be the first to comment

Leave a Reply

Your email address will not be published.


*