Exponents and logarithms, multiple pages

Logarithmic functions

The exponential function f(x)=a^{x} is a one-one function, with 0<a<1 or a>1.

This can also be noted: \forall a \in (0,1)\cup (1,+\infty)

The inverse of this function is the logarithmic\; function.

If f(x)=5^{x}

Let’s write y=5^{x}

If we switch: x=5^{y}

We note:

y=\log_{5}x

f^{-1}(x)=\log_{5}x

 

These equations are of the form:

f(x)=\log_{b}x

Notation:

b^{y}=x  is equivalent to \log_{b}x=y

 

 Example: 5^{4}=x

Means \log_{5}x=4

 

To solve:

y=\log_{b}x

We write: x=b^{y}

 

The graph of the logarithmic function is the reflexion about y=x of the exponential function 

The domain is only the positive numbers (0,\infty) with a a range of \mathbb{R}

The x-intercept is 1 while there is no y-intercept

It decreases if 0<a<1 and it increases if a>1

Properties of logarithms:

\log_{b}b=1 because b^{1}=b

\log_{b}1=0 because b^{0}=1

\log_{b}b^{n}=n because b^{n}=b^{n}

b^{\log_{b}x}=x

With b \neq 1

\log_{b}(u\cdot v)=\log_{b}u+\log_{b}v

\log_{b}\left(\frac{u}{v}\right)=\log_{b}u-\log_{b}v, with b,u, v and x are positive real numbers and b \neq 1

\log_{b}u^{n}=n\cdot \log_{b}u

Base change formula:

\log_{b}x=\frac{\log_{c}x}{\log_{c}b}, with b, c, and x are positive real numbers, b \neq 1, and c \neq 1

If:

\log_{b}u=\log_{b}v, then u=v

Here , u, v, and b are positive real numbers, and b \neq 1

Be the first to comment

Leave a Reply

Your email address will not be published.


*