Exponents and logarithms, multiple pages

Solve for x

x=\log_{125}5

We take the exponent 125 of both sides:
125^{x}=125^{\log_{125}5}

This is simply:
125^{x}=5
5^{3x}=5^{1}
3x=1
x=\frac{1}{3}

Answer:x=\frac{1}{3}

Solve for x

6=\log_{3}x

We have:
3^6=x
x=729

Answer: x=729

Solve for x

10^x=\frac{1}{500}

10^x=\frac{2}{1000}
10^x=\frac{2}{10^3}
10^x=2\times 10^{-3}
x=\log_{10}(2\times 10^{-3})
x=\log_{10}(2)-3
x \approx -2.69897

Solve for x

2x=\log_{5}25

We can write:
x=\frac{1}{2}\log_{5}25
x=\log_{5}25^{\frac{1}{2}}
x=\log_{5}5
x=1

Answer: x=1

Evaluate:
\log_{8}8^{5}+3^{\log_{3}8}

We can write:
\log_{8}8^{5}+3^{\log_{3}8}=5+8
\log_{8}8^{5}+3^{\log_{3}8}=13

Answer: \log_{8}8^{5}+3^{\log_{3}8}=13

Solve for x
1+5^{x}=360

5^{x}=359
x=log_{5}359
x=\frac{\ln 359}{\ln 5}
x\approx 3.6555

Answer: x=\frac{\ln 359}{\ln 5}

Solve for x

2^{x+1}=30

We write:
2^{x+1}=30
x+1=\log_{2}30
x=\frac{\ln 30}{\ln 2}-1

x=\frac{\ln(15\times 2)}{\ln 2}-1
x=\frac{\ln 15+ \ln 2}{\ln 2}-1
x=\frac{\ln 15}{\ln 2}+1-1

Answer: x=\frac{\ln 15}{\ln 2}

Solve for x and round to the nearest hundred

7^{-x}=0.022

We have:

7^{-x}=0.022
x=-\log_{7}0.022
x=-\frac{\ln 0.022}{\ln 7}
x\approx 1.96

Answer: x\approx 1.96

Solve for x

\log_{2^{x}}256=2

We can write:
\frac{\ln 256}{\ln (2^{x})}=2
\frac{\ln (2^{8})}{\ln (2^{x})}=2
This simplifies to:
\frac{8}{x}=2
2x=8
x=4

Answer: x=4

Solve for x

e^{2\ln x}=9

We can write:

e^{2\ln x}=9

e^{\ln x^{2}}=9
x^2=9
x=3

Answer: x=3

Solve for x

\log_{2}(x+3)=\log_{2}(x-3)+\log_{3}9+4^{\log_{4}3}

We can write:
\log_{2}(x+3)=\log_{2}(x-3)+\log_{3}9+4^{\log_{4}3}

\log_{2}(x+3)=\log_{2}(x-3)+\log_{3}3^{2}+3
\log_{2}(x+3)=\log_{2}(x-3)+2+3
\log_{2}(x+3)=\log_{2}(x-3)+5
\log_{2}(x+3)-\log_{2}(x-3)=5
\log_{2}\frac{x+3}{x-3}=5
\frac{x+3}{x-3}=2^{5}
\frac{x+3}{x-3}=32
x+3=32(x-3)
x+3=32x-96
31x=99
x=\frac{99}{31}

Answer: x=\frac{99}{31}

 

Solve for x

5^{x}=0.0016

We have to check on 0.0016
The reciprocal is 625
625=5^4

Back to the equation:
5^{x}=5^{-4}
That means:
x=-4

Finally:

Answer: x=-4

 

Solve for x

9e^{-2x}=1

e^{-2x}=\frac{1}{9}
e^{-2x}=\frac{1}{3^{2}}
e^{-2x}=3^{-2}
-2x=\ln(3^{-2}
-2x=-2\ln3

Finally
x=\ln3

Answer: x=\ln3

Solve for x

(e^{x}+1)(e^{\frac{x}{2}}-7)=0

Let’s say: e^{\frac{x}{2}}=t

The equation becomes:
(t^{2}+1)(t-7)=0

Only one root here: t^{2}+1 is always >0
t-7=0
t=7
Back to x notation:

e^{\frac{x}{2}}=t
e^{\frac{x}{2}}=7
\frac{x}{2}=\ln7
x=2\ln7

Finally:

Answer: x=2\ln7

 

Solve for x:

2+2\log_{3}x=\log_{3}(26x+3)

\log_{3}(26x+3)-\log_{3}x^{2}=2

\log_{3}\frac{26x+3}{x^{2}}=\log_{3}3^{2}

We get:

\frac{26x+3}{x^{2}}=9

26x+3=9x^{2}

Re-arranging:

9x^{2}-26x-3=0

Solving we get:

x_1=-\frac{1}{9} and x_2=3

But x must be >0

The solution is : x=3

 

Solve for x

\ln(x-2)+\ln(x+1)=\ln(3x-5)

We know that:
\ln(x-2)+\ln(x+1)=\ln{(x-2)(x+1)}
But:
(x-2)(x+1)=x^2-x-2
Back to the equation:
\ln(x-2)+\ln(x+1)=\ln(3x-5)
\ln{(x-2)(x+1)}=\ln(3x-5)
If we take the exponent on both sides we get:
(x-2)(x+1)=3x-5
x^2-x-2=3x-5
x^2-x-2-3x+5=3x-5-3x+5
x^2-4x+3=0
For factoring, let’s find two numbers having a sum of -4 and a product of 3.
These two numbers are -1 and -3
We plug them in:
x^2-4x+3=0
x^2-3x-x+3=0
x(x-3)-1(x-3)=0
(x-1)(x-3)=0
The two roots are:
x=1
This will not work because we will have to take the \ln(1-2) -Not possible.
Then x=3
This solution verifies our equation.
Finally:

Answer: x=3.

Solve for x

\ln|x+1|+\ln|x-5|=\ln16

\ln|(x+1)(x-5)|=\ln16
We get:
(x+1)(x-5)=16, unique case since the second will have no solution.
x^2-4x-5=16
x^2-4x-21=0
Find two numbers having a sum of -4 and a product of -21. They are -7 and 3.
The equation becomes:
x^2-7x+3x-21=0
x(x-7)+3(x-7)=0
(x+3)(x-7)=0

The roots:
x=-3
This is a valid results that verifies our equation.
\ln|-3+1|+\ln|-3-5|=\ln2+\ln8=\ln16

The second root:
x=7
This root also verifies the equation.

Finally:
The solution is x=-3 and x=7

Solve for x:

6\ln^{2}x+7\ln(x)-3=0

Let’s change the variable: \ln(x)=t
we have:
6t^2+7t-3=0
Find two numbers having a sum of 7 and a product of -18. These can be 9 and -2
The equation becomes:
6t^2-2t+9t-3=0
2t(3t-1)+3(3t-1)=0
(2t+3)(3t-1)=0
The roots:
2t+3=0
2t=-3
t=-\frac{3}{2}
For: \ln(x)=-\frac{3}{2}
We get:
x=e^{-\frac{3}{2}}
x=\frac{1}{\sqrt{e^3}}

Second root:
3t-1=0
3t=1
t=\frac{1}{3}

With \ln(x)=\frac{1}{3},
we get:
x=e^{\frac{1}{3}}
We can also write:
x=\sqrt[3]{e}

 

Solve for x:

4^{x}-3(4^{-x})=8

We can write:
4^{x}-3(4^{-x})=8

4^{x}-\frac{3}{4^{x}}=8

4^{x}\cdot 4^{x}-3=8\cdot 4^{x}

We change variable: t=4^{x}

We get:

t^2-8t-3=0

\Delta=64+12

\Delta=76

\sqrt{\Delta}=2\sqrt{19}

t_1=\frac{8+2\sqrt{19}}{2}

Back to x

4^{x}=\frac{8+2\sqrt{19}}{2}

x=\log_{4}(\frac{8+2\sqrt{19}}{2})

x=\log_{4}(4+\sqrt{19})

The other value of t is negative and to be rejected.

Answer:x=\log_{4}(4+\sqrt{19})

 

Solve for x and y

\begin{cases}{}x+y=65 \; (1)\\\ln(xy)=6\ln2 \; (2)\end{cases}

From (2) we have:

\ln(xy)=6\ln2
\ln(xy)=\ln(2^{6})
We get:
xy=64

From (1) we have:
x+y=65
y=65-x

In the new (2):
xy=64
We plug in:
x(65-x)=64
65x-x^2=64
x^2-65x+64=0
Find two numbers with sum -65 and product 64. They are -64 and -1.

x^2-65x+64=0
x^2-x-64x+64=0
x(x-1)-64(x-1)=0
(x-64)(x-1)=0
The roots are:
x=64
and y=65-64=1

Finally:
The solution is:
x=64 and y=1
Or:
x=1 and y=64

 

Solve for x and y

\begin{cases}{}\ln(x^{3}y^{4})=6 \; (1)\\\ln(\frac{x^2}{y^5})=5; (2)\end{cases}

Let’s re-write:
For (1):
\ln(x^{3}y^{4})=6
\ln(x^3)+\ln(y^4)=6
3\ln(x)+4\ln(y)=6

For (2):
\ln(\frac{x^2}{y^5})=5
\ln(x^2)-\ln(y^5)=5
2\ln(x)-5\ln(y)=5

Our system can now be written:
\begin{cases}{}3\ln(x)+4\ln(y)=6\; (11)\\2\ln(x)-5\ln(y)=5; (22)\end{cases}

By elimination, We multiply (11) by 2 and (12) by -3 and add the results up.
6\ln(x)+8\ln(y)=12
-6\ln(x)+15\ln(y)=-15
When we add:
23\ln(y)=-3
ln(y)=-\frac{3}{23}

y=e^{-\frac{3}{23}}
y=\frac{1}{\sqrt[23]{e^3}}

Now we proceed the same way to eliminate \ln(y)

By elimination, We multiply (11) by 5 and (12) by 4 and add the results up.
15\ln(x)+20\ln(y)=30
8\ln(x)-20\ln(y)=20
When we add:
23\ln(x)=50
ln(x)=-\frac{50}{23}

x=e^{\frac{50}{23}}=e^{\frac{46}{23}\cdot\frac{4}{23}}=e^{2}\sqrt[23]{e^{4}}

Finally the solution:

x=e^{2}\sqrt[23]{e^{4}}
y=\frac{1}{\sqrt[23]{e^3}}

These values verify our system of equations.

 

Be the first to comment

Leave a Reply

Your email address will not be published.


*