Exponents and logarithms, multiple pages

Solve for x

5^{x}=3\times 7^{x}

We can write:
x\ln5=\ln 3+ x\ln7
x(\ln5-\ln7)=\ln3
x=\frac{\ln3}{\ln5-\ln7}

We can also write:

x=\frac{\ln3}{\ln \frac{5}{7}}

Answer: x=\frac{\ln3}{\ln \frac{5}{7}}

Solve for x

9^{2x+12}=\left(\frac{1}{81}\right)^{3x+2}

We can write:
3^{2(2x+12)}=3^{-4(3x+2)}
4x+24=-12x-8
16x=-32
x=-2

Answer: x=-2

Solve for x

3^{5x-19}=729

We can write:
3^{5x-19}=3^{6}
5x-19=6
5x=25
x=5

Answer x=5

Solve for x

\ln x-\frac{1}{\ln x}=\frac{15}{4}

We write:

\ln x-\frac{1}{\ln x}=\frac{15}{4}

Let \ln x=t

The equation becomes:
t-\frac{1}{t}=\frac{15}{4}

To common denominator:
4t^{2}-15t-4=0

Find two numbers of sum -15 and product -16. These are -16 and 1.
We write:
4t^{2}-16t+t-4=0
4t(t-4)+1(t-4)=0
(t-4)(4t+1)=0

First value:
t-4=0
t=4

\ln x=4
x=e^{4}

Second value:
4t+1=0
4t=-1
t=-\frac{1}{4}
\ln x=-\frac{1}{4}
x=e^{-\frac{1}{4}}

Or:
x=\frac{1}{\sqrt[4]{e}}

Answer: x=e^{4} and x=\frac{1}{\sqrt[4]{e}}

 

Solve for x

\ln^{3}x-2\ln^{2}x-\ln x+2=0

 Let t=\ln x

We can write:

t^{3}-2t^{2}-t+2=0

t^{2}(t-2)-1(t-2)=0

(t^{2}-1)(t-2)=0

(t+1)(t-1)(t-2)=0

Three roots for t:

First case:

t+1=0 \Rightarrow t=-1

\ln x=-1

x=e^{-1}

 

Second Case:

t-1=0 \Rightarrow t=1

\ln x=1

x=e

 

Third Case:

t-2=0 \Rightarrow t=2

\ln x=2

x=e^{2}

 

Answer: x=e^{-1}x=e and x=e^{2}

Solve for x

2\ln(2x-1)-\ln(3x-2x^{2})=\ln(\frac{4x-3}{x})

We can write:

2\ln(2x-1)-\ln(3x-2x^{2})=\ln(\frac{4x-3}{x})
\ln(\frac{(2x-1)^{2}}{3x-2x^{2}})=\ln(\frac{4x-3}{x})
\frac{(2x-1)^{2}}{3x-2x^{2}}=\frac{4x-3}{x}
\frac{4x^{2}-4x+1}{3x-2x^{2}}=\frac{4x-3}{x}
x(4x^{2}-4x+1)=(3x-2x^{2})(4x-3)
4x^{3}-4x^{2}+x=12x^{2}-9x-8x^{3}+6x^{2}

In grouping by coefficients we get:

12x^{3}-22x^{2}+10x=0

2x(6x^{2}-11x+5)=0

To factor find 2 numbers with a sum -11 and a product of 30. These are -6 and -5.

We write
2x(6x^{2}-11x+5)=0
2x(6x^{2}-6x-5x+5)=0
2x(6x(x-1)-5(x-1))=0
2x(6x-5)(x-1)=0

First case:
x=0
This is not acceptable in original equation.

Second case:
x=1

This value verifies the equation when we plug in.

Third case:
6x-5=0
6x=5
x=\frac{5}{6}

When we plug in: Both members value is \ln 2 -\ln 5

Answer: x=1 and x=\frac{5}{6}

 

Solve for x

\ln(5x^{2}+6x+1)> 0

We can write:

\ln(5x^{2}+6x+1)> 0

\ln(5x^{2}+6x+1)> \ln 1

5x^{2}+6x> 0

x(5x+6)> 0

We use the following table:

Factor x<\frac{-6}{5} \frac{-6}{5}<x<0 x\geq 0
x - - +
5x+6 - + +
x(5x+6) + - +

 

We can see the solution:

x<-\frac{6}{5} and x> 0

Answer: x<-\frac{6}{5} and x> 0

 

Solve for x

\ln(x^2-10x+9)\geq \ln(3x-27)

We can write:

\ln(x^2-10x+9)\geq \ln(3x-27)

x^2-10x+9\geq 3x-27

x^2-13x+36 \geq 0

Find two numbers with a sum of -13 and a product 36. These are -9 and -4
We can now re-write:

x^2-9x-4x+36 \geq 0

x(x-9)-4(x-9) \geq 0

(x-4)(x-9) \geq 0

We use the following table:

Factor x<4 4<x<9 x\geq 9
x-4 - + +
x-9 - - +
(x-4)(x-9) + - +

 

 

 

 

We can see the solution:

For x \leq 4, the factor is \geq 0

However, this will not satisfy \ln(3x-27). So that range is to  be rejected.

For x \geq 9, the factor is \geq 0. This value satisfies our equation

Answer: x \geq 9

 

 

Solve for x

\ln x-\frac{1}{\ln x}< \frac{8}{3}

We write:

\ln x-\frac{1}{\ln x}< \frac{8}{3}

Let \ln x=t

t-\frac{1}{t}<\frac{8}{3}

Common denominator: 3t

\frac{3t^{2}-3}{3t}<\frac{8t}{3t}

\frac{3t^{2}-8t-3}{3t}<0

To factor we need two numbers having a sum of -8 and a product of -9. These are -9 and 1.

\frac{3t^2-9t+t-3}{3t}<0

\frac{3t(t-3)+1(t-3)}{3t}<0

\frac{(3t+1)(t-3)}{3t}<0

We use the following table:

Factor t<-\frac{1}{3} -\frac{1}{3}<0 0<t<3 t>3
3t+1 - + + +
t-3 - - - +
3t - - + +
\frac{(3t+1)(t-3)}{3t} - + - +

 

 

 

 

 

We can see the solution:

The solution is : t<-\frac{1}{3}

Now back to x

\ln x<-\frac{1}{3}

0<x<e^{-\frac{1}{3}}

Or:

0<x<\frac{1}{\sqrt[3]{e}}

 

The second case:

0<t<3

0<\ln x < 3

1<x<e^{3}

Answer: 0<x<\frac{1}{\sqrt[3]{e}}1<x<e^{3}

 

Solve for x:

\log_{2x+3} \left (6x^2+23x+21 \right)=4- \log_{3x+7} \left (4x^2+12x+9 \right)

Our first step is to see where we can get a weak link in this equation. The designers always keep one door open.

Let’s check the factors:

(1)   \begin{equation*} \begin{split} (2x+3)^2 &=(2x)^2+2 \cdot (2x) \cdot 3+ 3^2\\ &=4x^2+12x+9 \end{split} \end{equation*}

This is our first catch.
Let’s investigate further:

(2)   \begin{equation*} \begin{split} (2x+3) \cdot (3x+7)&=(2x) \cdot (3x)+(2x) \cdot (7)+(3) \cdot (3x)+(3)\cdot (7)\\ &=6x^2+14x+9x+21\\ &=6x^2+23x+21 \end{split} \end{equation*}

As suggested, we found two polynomials equal to the ones in the equation.
Now we need our logarithms experience:
It says:
\log_{a} \left (x \right)=\frac{ log_{b} \left (x \right)}{ log_{b} \left (a \right)}
Back to our factors:

\log_{2x+3} (6x^2+23x+21)= \log_{2x+3}((2x+3)\cdot (3x+7))

But another rule is: 
\log_{a} \left (xy \right)= \log_{a} \left (x \right)+ \log_{a} \left (y\right)
Now we have:
\log_{2x+3} \left (6x^2+23x+21 \right)= \log_{2x+3}(2x+3)+ \log_{2x+3}(3x+7)
But another log rule is
\log_{a} \left (a \right)=1. Even if we apply the previous rule we get 1.
That means:
\log_{2x+3} \left (6x^2+23x+21 \right)= 1+ \log_{2x+3}(3x+7)

On the other side of the equation:

(3)   \begin{equation*} \begin{split} \log_{3x+7} \left (4x^2+12x+9 \right)&= \log_{3x+7} (2x+3)^2\\ &=2 \log_{3x+7} \left (2x+3 \right) \end{split} \end{equation*}

Our final equation:

1+ \log_{2x+3}(3x+7)=4-2 \log_{3x+7} \left (2x+3 \right) (1*)

From what we know now we get:
\log_{2x+3}(3x+7)=3-2 \log_{3x+7}(2x+3)
Now let’s introduce another variable: U
Let U=\log_{2x+3}(3x+7)
That means: \log_{3x+7} \left (2x+3 \right)=\frac{1}{U}
From (1*):
U=3-\frac{2}{U}
Multiplying all by U we get:
U^2-3U+2=0
Let’s factor this:
U^2-2U-U+2=0
U(U-2)-1(U-2)=0
(U-1)(U-2)=0
The solution is U=1 or U=2;
For U=1:
\log_{2x+3}(3x+7)=1
It means: 3x+7=2x+3 with a solution of x=-4. Not acceptable since 3x+7 must be positive
Now for U=2:
\log_{2x+3} (3x+7)=2
It yields:
3x+7=(2x+3)^2
4x^2+9x+2=0 After simplification.
\Delta=49
x_1=-\frac{1}{4}
x_2=-2 (2x+3) becomes negative. Not acceptable.

Now for x=-\frac{1}{4} we can easily verify that the solution is good.
Finally:

x=-\frac{1}{4} is our solution.

Be the first to comment

Leave a Reply

Your email address will not be published.


*