Integration Techniques, multiple pages

2.Integration by parts

This is the technique of transforming one integral into another that is easier to evaluate.

The integration by parts comes from the following derivatives formula:

(uv)'=u'v+uv'

This can be written:

uv'=(uv)'-u'v

Taking the indefinite integral of both side we get:

\int udv=\int d(uv)-\int vdu

Or simply:

{\displaystyle \int u\, dv =uv-\int v\, du}

We must make an adequate choice in order not to get a more complicated integrated.

One of the favorite examples is:

Evaluate {\displaystyle \int \ln x\, dx}

Let u=\ln x \Rightarrow  du=\frac{dx}{x}

dv=dx \Rightarrow v=x

 {\displaystyle \int \ln x\, dx=x \ln x-\int x\cdot \frac{dx}{x}=x \ln x-x+C}

Problem 13
Evaluate: {\displaystyle \int xe^{x}\, dx}

Let u=x \Rightarrow du=dx

dv=e^{x}dx \Rightarrow v=e^{x}

We get:

(1)   \begin{equation*} \begin{split} \displaystyle \int xe^{x}\, dx}&={\displaystyle xe^{x}- \int e^{x}\, dx}\\ &={\displaystyle xe^{x}- e^{x}+C} \end{split} \end{equation*}

Finally:

{\displaystyle \int xe^{x}\, dx=(x-1)e^{x}+C}

Problem 14
Evaluate: {\displaystyle \int e^{2x} \sin 3x\, dx}

Let u=\sin3x \Rightarrow du=3\cos 3x dx

dv=e^{2x}dx \Rightarrow v=\frac{1}{2}e^{2x}

We write:

(2)   \begin{equation*} \begin{split} \displaystyle \int e^{2x} \sin 3x\, dx}& = {\displaystyle \frac{1}{2} \sin (3x) e^{2x}-\frac{1}{2}\int e^{2x} 3\cos 3x\, dx}\\ &={\displaystyle \frac{1}{2} \sin (3x) e^{2x}-\frac{3}{2}\int e^{2x} \cos 3x\, dx} \end{split} \end{equation*}

We resume the process for the second part of the integral:

Let u=\cos3x \Rightarrow du=-3\sin 3x dx

dv=e^{2x}dx \Rightarrow v=\frac{1}{2}e^{2x}

(3)   \begin{equation*} \begin{split} \displaystyle \int e^{2x} \sin 3x\, dx}&={\displaystyle \frac{1}{2} \sin (3x) e^{2x}-\frac{3}{2}[\frac{1}{2} \cos (3x) e^{2x}+\frac{3}{2}\int e^{2x} \sin 3x\, dx]}\\ &= {\displaystyle \frac{1}{2} \sin (3x) e^{2x}-\frac{3}{4}\cos (3x) e^{2x}-\frac{9}{4}\int e^{2x} \sin 3x\, dx \end{split} \end{equation*}

We are back to a fraction of the original:

{\displaystyle (1+\frac{9}{4})\int e^{2x} \sin 3x\, dx}={\displaystyle \frac{1}{2} \sin (3x) e^{2x}-\frac{3}{4}\cos (3x) e^{2x}+C}

{\displaystyle \frac{13}{4}\int e^{2x} \sin 3x\, dx}={\displaystyle \frac{1}{2} \sin (3x) e^{2x}-\frac{3}{4}\cos (3x) e^{2x}+C}

{\displaystyle \int e^{2x} \sin 3x\, dx}={\displaystyle \frac{2}{13} \sin (3x) e^{2x}-\frac{3}{13}\cos (3x) e^{2x}+C}

{\displaystyle \int e^{2x} \sin 3x\, dx}={\displaystyle \frac{e^{2x}}{13} (2\sin 3x -3\cos 3x )+C}

Finally:

{\displaystyle \int e^{2x} \sin 3x\, dx}={\displaystyle \frac{e^{2x}}{13} (2\sin 3x -3\cos 3x )+C}

Problem 15
Evaluate: {\displaystyle \int  \sin^{-1} x\, dx}

Let u=\sin^{-1} x \Rightarrow du=\frac{dx}{\sqrt{1-x^{2}}}

dv=dx \Rightarrow v=x

We write:

(4)   \begin{equation*} \begin{split} \displaystyle \int  \sin^{-1} x\, dx}&={\displaystyle x sin^{-1} x- \int \frac{x}{\sqrt{1-x^{2}}} \, dx}\\ &={\displaystyle x sin^{-1} x+ \frac{1}{2} \int \frac{-2x}{\sqrt{1-x^{2}}}}\\ &={\displaystyle x sin^{-1} x-\sqrt{1-x^{2}}+C \end{split} \end{equation*}

Finally:

{\displaystyle \int  \sin^{-1} x\, dx}={\displaystyle x sin^{-1} x-\sqrt{1-x^{2}}+C}

Problem 16
Evaluate: {\displaystyle \int  e^{x} \cos x\, dx}

Let u=e^{x} \Rightarrow du=e^{x}\, dx

dv=\cos x\,dx \Rightarrow v=\sin x

We write:

{\displaystyle \int  e^{x} \cos x\, dx}={\displaystyle e^{x} \sin x - \int  e^{x} \sin x\, dx}

We resume:

Let u=e^{x} \Rightarrow du=e^{x}\, dx

dv=\sin x\,dx \Rightarrow v=-\cos x

Back to the original equation:

{\displaystyle \int  e^{x} \cos x\, dx}={\displaystyle e^{x} \sin x -[-e^{x} \cos x + \int  e^{x} \cos x\, dx]}

{\displaystyle \int  e^{x} \cos x\, dx}={\displaystyle e^{x} \sin x + e^{x} \cos x - \int  e^{x} \cos x\, dx}

{\displaystyle 2\int  e^{x} \cos x\, dx}={\displaystyle e^{x} \sin x + e^{x} \cos x + C}

{\displaystyle \int  e^{x} \cos x\, dx}={\displaystyle \frac{e^{x}}{2}( \sin x + \cos x )+ C}

Finally:

{\displaystyle \int  e^{x} \cos x\, dx}={\displaystyle \frac{e^{x}}{2}( \sin x + \cos x )+ C}

Problem 17- Special Case
Evaluate: {\displaystyle \int \sec^{n} x \, dx}

When n is a large natural number,we decrease n by 2 to case a situation where we have to integrate \sec^{2} x

We proceed as follows:

Let u=\sec^{n-2}x \Rightarrow du=(n-2)\sec^{n-2} x \tan x \, dx

dv=\sec^{2} x \,dx \Rightarrow v=\tan x

We get:

{\displaystyle \int \sec^{n} x \, dx} ={\displaystyle \sec^{n-2}x \tan x- (n-2) \int \sec^{n-2} x \tan^{2} x \, dx}

Or:

{\displaystyle \int \sec^{n} x \, dx} ={\displaystyle \sec^{n-2}x \tan x- (n-2) \int \sec^{n-2} x (\sec^{2} x-1) \, dx}

{\displaystyle \int \sec^{n} x \, dx} ={\displaystyle \sec^{n-2}x \tan x- (n-2) \int \sec^{n} x \, dx+  (n-2) \int \sec^{n-2} x \, dx}

We find the original integral in the right part. We group and we get:

{\displaystyle (n-2+1)\int \sec^{n} x \, dx} ={\displaystyle \sec^{n-2}x \tan x+  (n-2) \int \sec^{n-2} x \, dx}

{\displaystyle (n-1)\int \sec^{n} x \, dx} ={\displaystyle \sec^{n-2}x \tan x+  (n-2) \int \sec^{n-2} x \, dx}

We get:

{\displaystyle \int \sec^{n} x \, dx} ={\displaystyle \frac{ \sec^{n-2}x \tan x}{n-1}+\frac{n-2}{n-1}  \int \sec^{n-2} x\, dx}

This is very useful when combined with our know formula:

{\displaystyle \int \sec x \, dx} ={\displaystyle \ln |\sec x+ \tan x | +C}

Problem 18
Evaluate: {\displaystyle \int \sec^{5} x \, dx}

Let u=\sec^{5-2}x \Rightarrow du=(5-2)\sec^{5-2} x \tan x \, dx

Or:

u=\sec^{3}x \Rightarrow du=3\sec^{3} x \tan x \, dx

dv=\sec^{2} x \,dx \Rightarrow v=\tan x

We get:

{\displaystyle \int \sec^{5} x \, dx} = {\displaystyle \frac{1}{4}\sec^{3}x \tan x +\frac{3}{4} \int \sec^{3} x \, dx}

Now, just for fun

{\displaystyle \int \sec^{3} x \, dx} ={\displaystyle \int \sec^{2} x \sec x \, dx}

Let u=\sec x \Rightarrow du=\sec x \tan x \, dx

dv=\sec^{2} x \,dx \Rightarrow v=\tan x

{\displaystyle \int \sec^{3} x \, dx} ={\displaystyle \sec x \tan x-\int \sec x \tan x \tan x \,dx}

{\displaystyle \int \sec^{3} x \, dx}={\displaystyle \sec x \tan x-\int \sec x \tan^{2} x \,dx}

{\displaystyle \int \sec^{3} x \, dx}={\displaystyle \sec x \tan x-\int \sec x (\sec^{2} x-1) \,dx}

{\displaystyle \int \sec^{3} x \, dx}={\displaystyle \sec x \tan x-\int \sec^{3} x+ \int \sec x \,dx}

{\displaystyle 2\int \sec^{3} x \, dx}={\displaystyle \sec x \tan x+ \int \sec x \,dx}

{\displaystyle 2\int \sec^{3} x \, dx}={\displaystyle \sec x \tan x+ \ln| \sec x + tan x |+C}

{\displaystyle \int \sec^{3} x \, dx}={\displaystyle \frac{1}{2}(\sec x \tan x+ \ln| \sec x + tan x |)+C}

Back to the original equation:

{\displaystyle \int \sec^{5} x \, dx} = {\displaystyle \frac{1}{4}\sec^{3}x \tan x +\frac{3}{4}\cdot  \frac{1}{2}(\sec x \tan x+ \ln| \sec x + tan x |)+C}

{\displaystyle \int \sec^{5} x \, dx} = {\displaystyle \frac{1}{4}\sec^{3}x \tan x +\frac{3}{8}(\sec x \tan x+ \ln| \sec x + tan x |)+C}

Finally:

{\displaystyle \int \sec^{5} x \, dx} = {\displaystyle \frac{1}{4}\sec^{3}x \tan x +\frac{3}{8}(\sec x \tan x+ \ln| \sec x + tan x |)+C}

Be the first to comment

Leave a Reply

Your email address will not be published.


*