Integration Techniques, multiple pages

3. Trigonometric substitution

The following algebraic expressions when involved in the integrands, we need to use the method of trigonometric substitution:

(a^{2}-u^{2})^{\frac{1}{2}}

(u^{2}-a^{2})^{\frac{3}{2}}

\frac{1}{(a^{2}+u^{2})^{2}}

Trigonometric cases

Integral Involving Use Substitution Then Identity
a^{2}-u^{2} u=a \sin \theta 1-\sin^{2} \theta=\cos^{2} \theta
a^{2}+u^{2} u=a \tan \theta 1+\tan^{2} \theta=\sec^{2} \theta
u^{2}-a^{2} u=a \sec \theta \sec^{2} \theta-1=\tan^{2} \theta

Or Hyperbolic substitution:

Integral Involving Use Substitution Then Identity
a^{2}-u^{2} u=a \tanh \theta 1-\tanh^{2} \theta=sech^{2} \theta
a^{2}+u^{2} u=a \sinh \theta 1+\sinh^{2} \theta=\cosh^{2} \theta
u^{2}-a^{2} u=a \cosh \theta \cosh^{2} \theta-1=\sinh^{2} \theta

Problem 19
Evaluate: {\displaystyle \int \frac{dx}{(4-x^{2})^{3}} }

This is the scenario containing a^{2}-u^{2}

In this istuation, a=2

Let x=2 \sin \theta

dx=2 \cos \theta d\theta

4-x^{2}=4-4 \sin^{2}\theta=4(1-\sin^{2} \theta)=4\cos^{2}\theta

Back to the equation:

(1)   \begin{equation*} \begin{split} \displaystyle \int \frac{dx}{(4-x^{2})^{3}} &={\displaystyle \int \frac{2 \cos \theta \,d\theta}{(4\cos^{2}\theta)^{3}}}\\ &={\displaystyle \frac{2}{64}\int \frac{\cos \theta \,d\theta}{\cos^{6}\theta}}\\ &={\displaystyle\frac{1}{32}\int sec^{5} \theta \, d\theta} \end{split} \end{equation*}

Now let’s Calculate the following:

{\displaystyle \int sec^{5} \theta \, d\theta}

Using our methods learned earlier:

(2)   \begin{equation*} \begin{split} \displaystyle \int sec^{5} \theta \, d\theta &=\displaystyle \frac{1}{4} \sec^{3} \theta \tan \theta+\frac{3}{4}\int \sec^{3}\theta \, d\theta \\ &= {\displaystyle \frac{1}{4} \sec^{3} \theta \tan \theta+\frac{3}{4}\left (\frac{1}{2}\sec \theta \tan \theta +\frac{1}{2} \int sec \theta \, d\theta \right )}\\ &={\displaystyle \frac{1}{4} \sec^{3} \theta \tan \theta+\frac{3}{4}\left (\frac{1}{2}\sec \theta \tan \theta +\frac{1}{2} \ln | \sec \theta +\tan \theta| \right ) +C} \\ &={\displaystyle \frac{1}{4} \sec^{3} \theta \tan \theta+\frac{3}{8}\sec \theta \tan \theta +\frac{3}{8} \ln | \sec \theta +\tan \theta| +C} \end{split} \end{equation*}

Back to x we should apply the following:

x=2 \sin \theta \Rightarrow \sin \theta =\frac{x}{2}

\sin \theta =\frac{x}{2} \Rightarrow \cos \theta=\sqrt{1-(\frac{x}{2})^{2}}=\sqrt{1-\frac{x^{2}}{4}}=\sqrt{\frac{4-x^{2}}{4}}=\frac{1}{2}\sqrt{4-x^{2}}

 \cos \theta=\frac{1}{2}\sqrt{4-x^{2}}

\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{x}{\sqrt{4-x^{2}}}

\sec \theta=\frac{1}{\cos \theta}=\frac{2}{\sqrt{4-x^{2}}}

Let’s apply to the general result:

{\displaystyle \int \frac{dx}{(4-x^{2})^{3}} }={\displaystyle\frac{1}{32}\int sec^{5} \theta \, d\theta }

(3)   \begin{equation*} \begin{split} \displaystyle \int \frac{dx}{(4-x^{2})^{3}} }&={\displaystyle\frac{1}{32}\left ( \frac{1}{4} \sec^{3} \theta \tan \theta+\frac{3}{8}\sec \theta \tan \theta +\frac{3}{8} \ln | \sec \theta +\tan \theta| \right ) +C}\\ &={\displaystyle \frac{1}{32} \cdot  \frac{1}{4}(\frac{2}{\sqrt{4-x^{2}}})^{3} \cdot \frac{x}{\sqrt{4-x^{2}}}+\frac{1}{32} \cdot \frac{3}{8}\cdot \frac{2}{\sqrt{4-x^{2}}} \cdot \frac{x}{\sqrt{4-x^{2}}}+ \frac{1}{32} \cdot \frac{3}{8} \cdot \ln |\frac{2}{\sqrt{4-x^{2}}}+ \frac{x}{\sqrt{4-x^{2}}}| +C}\\ &={\displaystyle   \frac{1}{128}\cdot \frac{8}{(\sqrt{4-x^{2}})^{3}}\cdot \frac{x}{\sqrt{4-x^{2}}}+\frac{3}{256} \cdot \frac{2}{\sqrt{4-x^{2}}} \cdot \frac{x}{\sqrt{4-x^{2}}}+ \frac{3}{256} \cdot \ln |\frac{2}{\sqrt{4-x^{2}}}+ \frac{x}{\sqrt{4-x^{2}}}| +C} \\ &= {\displaystyle \frac{1}{256}\cdot \frac {16x}{(4-x^{2})^{2}}+\frac{3}{256}\cdot \frac{2x}{4-x^{2}}+ \frac{3}{256}\cdot \ln |\frac{2+x}{\sqrt{4-x^{2}}} | +C}\\ &= {\displaystyle \frac{1}{256}\cdot \frac{16x+6x(4-x^{2})}{(4-x^{2})^{2}}+ \frac{3}{256}\cdot \ln |\frac{\sqrt{(2+x)(2+x)}}{\sqrt{(2+x)(2-x)}} | +C}\\ &= {\displaystyle  \frac{1}{256}\cdot  \frac{40x-6x^{3}}{(4-x^{2})^{2}}+\frac{3}{256}\cdot \frac{1}{2} \cdot \ln |\frac{2+x}{2-x} | +C }\\ &= {\displaystyle \frac{20x-3x^{3}}{(4-x^{2})^{2}}+\frac{3}{512}\ln |2+x|- \frac{3}{512}\ln |2-x| +C} \end{split} \end{equation*}

Finally:

{\displaystyle \int \frac{dx}{(4-x^{2})^{3}} }={\displaystyle \frac{20x-3x^{3}}{(4-x^{2})^{2}}+\frac{3}{512}\ln |2+x|- \frac{3}{512}\ln |2-x| +C}

Problem 20
Evaluate: {\displaystyle \int \frac{dx}{\sqrt{9+4x^{2}}} }

This is the scenario containing a^{2}+u^{2}

In this istuation, a=3

Here u=2x

Let u=3 \tan \theta \Rightarrow 2x=3 \tan \theta

2dx=3 \sec^{2} \theta  d\theta \Rightarrow dx=\frac{3}{2}\sec^{2} \theta \, d\theta

9+u^{2}=9+9\tan^{2}\theta=9(1+\tan^{2} \theta)=9\sec^{2}\theta

Back to the equation

\begin {align*}{\displaystyle \int \frac{dx}{\sqrt{9+4x^{2}}} }&={\displaystyle \frac{3}{2} \int \frac{\sec^{2} \theta \, d\theta}{\sqrt{9\sec^{2}\theta} } }\\&={\displaystyle \frac{3}{2} \int \frac{\sec^{2} \theta \, d\theta}{3\sec \theta} }\\&={\displaystyle \frac{1}{2}\int \sec \theta \, d\theta }\\&= {\displaystyle \frac{1}{2} \ln | \sec \theta + \tan \theta |+C }\end{align*}

Now back to x

\tan \theta=\frac{2x}{3}

\cos \theta=\frac{3}{\sqrt{9+4x^{2}}}

\sec \theta=\frac{\sqrt{9+4x^{2}}}{3}

(4)   \begin{equation*} \begin{split} \displaystyle \int \frac{dx}{\sqrt{9+4x^{2}}} }&=  {\displaystyle \frac{1}{2} \ln \left |\frac{\sqrt{9+4x^{2}}}{3} + \frac{2x}{3}\right |+C }\\ &={\displaystyle \frac{1}{2} \ln \left |\frac{\sqrt{9+4x^{2}}}{3} + \frac{2x}{3}\right |+C } \end{split} \end{equation*}

Finally:

{\displaystyle \int \frac{dx}{\sqrt{9+4x^{2}}} }={\displaystyle \frac{1}{2} \ln \left |\frac{\sqrt{9+4x^{2}}}{3} + \frac{2x}{3}\right |+C}={\displaystyle \frac{1}{2} \ln \left |\sqrt{9+4x^{2}} + 2x\right |+C_{1}}

OR:

{\displaystyle \int \frac{dx}{\sqrt{9+4x^{2}}} }=\frac{1}{2}\sinh^{-1} (\frac{2x}{3})+C

By simply using the following hyperbolic substitutions:

Here u=2x

Let u=3\sinh \theta

We get 2x=3\sinh \theta \Rightarrow 2dx=3 \cosh \theta \, d\theta

\sqrt{9+4x^{2}}=\sqrt{9+9\sinh^{2} \theta}=\sqrt{9(1+\sinh^{2} \theta)}=3\sqrt{1+\sinh^{2} \theta}=3\cosh \theta

We substitute:

(5)   \begin{equation*} \begin{split} \displaystyle \int \frac{dx}{\sqrt{9+4x^{2}}} }&=  {\displaystyle \frac{3}{2} \int \frac{cosh \theta \, d\theta}{3\cosh \theta}}\\ &={\displaystyle \frac{1}{2} \int d\theta }\\ &=\theta +C \end{split} \end{equation*}

But we have seen that:

2x=3\sinh \theta \Rightarrow \theta=\sinh^{-1} (\frac{2x}{3})

Hence:

{\displaystyle \int \frac{dx}{\sqrt{9+4x^{2}}} }=\frac{1}{2}\sinh^{-1} (\frac{2x}{3})+C

Problem 21
Evaluate: {\displaystyle \int \sqrt{9+16x^{2}} \, dx }

This is the scenario containing a^{2}+u^{2}

In this istuation, a=3

Here u=4x

Let u=3 \sinh \theta \Rightarrow 4x=3 \sinh \theta

4dx=3 \cosh \theta d\theta \Rightarrow dx=\frac{3}{4} \cosh \theta d\theta

\sqrt{9+16x^{2}}=\sqrt{9+9\sinh^{2} \theta}=\sqrt{9(1+\sinh^{2} \theta)}=3\sqrt{1+\sinh^{2} \theta}=3\cosh \theta

Back to the equation

(6)   \begin{equation*} \begin{split} \displaystyle \int \sqrt{9+16x^{2}} \, dx }&= {\displaystyle \frac{3}{4}\int 3\cosh \theta \cosh \theta \, d\theta }\\ &= {\displaystyle \frac{9}{4}\int \cosh^{2} \theta \, d\theta } \end{split} \end{equation*}

But we know that:

\cosh 2\theta=2 \cosh \theta -1

\cosh^{2} \theta =\frac{\cosh 2\theta + 1}{2}

(7)   \begin{equation*} \begin{split} \displaystyle \int \sqrt{9+16x^{2}} \, dx }&={\displaystyle \frac{9}{4}\int \cosh^{2} \theta \, d\theta } \\ &={\displaystyle \frac{9}{8} \int \cosh 2\theta \, d\theta +\frac{9}{8} \int d\theta }\\ &={\displaystyle  \frac{9}{16} \sinh 2\theta +\frac{9}{8} \theta +C}\\ &= \frac{9}{16} \cdot 2\sinh \theta \cosh \theta +\frac{9}{8}\theta +C \end{split} \end{equation*}

Now getting back to x

 \sinh \theta =\frac{4x}{3}

 \cosh \theta= \sqrt{1+(\frac{4x}{3})^{2}}=\frac{1}{3}\sqrt{9+16x^{2}}

To our original equation:

(8)   \begin{equation*} \begin{split} \displaystyle \int \sqrt{9+16x^{2}} \, dx }&={\displaystyle \frac{9}{16}\cdot 2 \cdot  \frac{4x}{3}\cdot \frac{1}{3}\sqrt{9+16x^{2}} + \frac{9}{8}\sinh^{-1} \left (  \frac{4x}{3}\right)+C} \end{split} \end{equation*}

{\displaystyle \int \sqrt{9+16x^{2}} \, dx }={\displaystyle \frac{x}{2}\sqrt{9+16x^{2}} +\frac{9}{8} \sinh^{-1} \left (  \frac{4x}{3}\right)+C}

Finally:

{\displaystyle \int \sqrt{9+16x^{2}} \, dx }={\displaystyle \frac{x}{2}\sqrt{9+16x^{2}} +\frac{9}{8} \sinh^{-1} \left (  \frac{4x}{3}\right)+C}

OR:

{\displaystyle \int \sqrt{9+16x^{2}} \, dx }={\displaystyle \frac{x}{2}\sqrt{9+16x^{2}} +\frac{9}{8} \ln \left | 4x+  \sqrt{9+16x^{2}} \right |+C_{1}}

Problem 22
Evaluate: {\displaystyle \int \frac{dx}{x^{2}\sqrt{4x^{2}-9}} }

Using trigonmetric substitution

This is the scenario containing u^{2}-a^{2}

In this istuation, a=3

Here u=2x

Let u=3 \sec \theta \Rightarrow 2x=3 \sec \theta

2dx=3 \sec \theta \tan \theta d\theta \Rightarrow dx= \frac{3}{2}\sec \theta \tan \theta d\theta

x=\frac{3}{2} \sec \theta

x^{2}=\frac{9}{4} \sec^{2} \theta

\sqrt{4x^{2}-9}=\sqrt{9 \sec^{2} \theta-1}=3 \sqrt{\tan^{2} \theta}=3 \tan \theta

Back to the equation

(9)   \begin{equation*} \begin{split} \displaystyle \int \frac{dx}{x^{2}\sqrt{4x^{2}-9}} }&= {\displaystyle \frac{3}{2} \int \frac{\sec \theta  \tan \theta\, d\theta}{\frac{9}{4}\sec^{2} \theta \cdot 3 \tan \theta} }\\ &={\displaystyle \frac{2}{9} \int \cos \theta \, d\theta}\\ &={\displaystyle \frac{2}{9} \sin \theta + C} \end{split} \end{equation*}

2x=3 \sec \theta \Rightarrow \cos \theta=\frac{3}{2x}

\sin \theta=\sqrt{1-(\frac{3}{2x})^{2}}=\sqrt{1-\frac{9}{4x^{2}}}=\sqrt{\frac{4x^{2}-9}{4x^{2}}}=\frac{1}{2x}\sqrt{4x^{2}-9}

Now our equation becomes:

{\displaystyle \int \frac{dx}{x^{2}\sqrt{4x^{2}-9}} }=\frac{2}{9} \cdot \frac{1}{2x}\sqrt{4x^{2}-9}+C

Finally:

{\displaystyle \int \frac{dx}{x^{2}\sqrt{4x^{2}-9}} }={\displaystyle \frac{\sqrt{4x^{2}-9}}{9x}+C}

Problem 23
Evaluate: {\displaystyle \int \frac{dx}{x^{2}\sqrt{4x^{2}-9}} }

Using hyperbolic substitution

This is the scenario containing u^{2}-a^{2}

In this istuation, a=3

Here u=2x

Let u=3 \cosh \theta \Rightarrow 2x=3 \cosh \theta

x=\frac{3}{2}\cosh \theta

dx=\frac{3}{2}\sinh \theta \, d\theta

x^{2}=\frac{9}{4}\cosh^{2} \theta

\sqrt{4x^{2}-9}=\sqrt{9 \cosh^{2} \theta-9}=3 \sqrt{\cosh^{2} \theta-1}=3 \sqrt{\sinh^{2} \theta}=3 \sinh \theta

Back to the equation

(10)   \begin{equation*} \begin{split} \displaystyle \int \frac{dx}{x^{2}\sqrt{4x^{2}-9}} }&= {\displaystyle \frac{3}{2} \int \frac{\sinh \theta \, d\theta}{\frac{9}{4}\cosh^{2} \theta \cdot 3 \sinh \theta} }\\ &={\displaystyle \frac{2}{9} \int sech^{2} \theta \, d\theta}\\ &={\displaystyle \frac{2}{9} \tanh \theta + C} \end{split} \end{equation*}

\cosh \theta= \frac{2x}{3}

3\sinh \theta=\sqrt{4x^{2}-9}

\sinh \theta=\frac{1}{3}\sqrt{4x^{2}-9}

\tanh \theta=\frac{\sqrt{4x^{2}-9}}{3 \frac{2x}{3}}=\frac{\sqrt{4x^{2}-9}}{2x}

Back to the original equation:

{\displaystyle \int \frac{dx}{x^{2}\sqrt{4x^{2}-9}} }={\displaystyle \frac{2}{9} \cdot \frac{\sqrt{4x^{2}-9}}{2x}+C }

Finally:

{\displaystyle \int \frac{dx}{x^{2}\sqrt{4x^{2}-9}} }={\displaystyle \frac{\sqrt{4x^{2}-9}}{9x} +C}

Be the first to comment

Leave a Reply

Your email address will not be published.


*