Integration Techniques, multiple pages

4.Integration with quadratics in denominator

This is the form:

{\displaystyle \int \frac{dx}{ax^{2}+bx +c} }

Let’s refresh ourselves with these important formulas we saw earlier:

Please note that all these are shown in videos.

{\displaystyle \int \frac{du}{a^{2}+u^{2}} }={\displaystyle \frac{1}{a}tan^{-1}\frac{u}{a}+C}

{\displaystyle \int \frac{du}{a^{2}-u^{2}} }={\displaystyle \frac{1}{2a}\ln \left | \frac{a+u}{a-u} \right |+C}

In previous problems we also discovered the following:

{\displaystyle \int \frac{du}{\sqrt{a^{2}-u^{2}}} }={\displaystyle \sin^{-1}\frac{u}{a}+C}

{\displaystyle \int \frac{du}{\sqrt{u^{2} \pm a^{2}}} }={\displaystyle \ln \left | u+\sqrt{u^{2} \pm a^{2}}\right |+C}

We will need these two formulas in this situation.

ax^{2}+bx +c can be converted to one of the forms :

u^{2} \pm a^{2} OR a^{2} \pm u^{2} depending on the sign of a

That will allow us to use one of these formulas.

Problem 24
Evaluate:
{\displaystyle \int \frac{dx}{x^{2}+4x +9} }

We can take care of the quadratic:

x^{2}+4x +9=(x+2)^{2}-4+9=(x+2)^{2}+5==(x+2)^{2}+(\sqrt{5})^{2}

We apply our formula:

(1)   \begin{equation*} \begin{split} \displaystyle \int \frac{dx}{x^{2}+4x +9} }&={\displaystyle \int \frac{dx}{(x+2)^{2}+(\sqrt{5})^{2}} }\\ &={\displaystyle \frac{1}{\sqrt{5}} \tan^{-1} \frac{x+2}{ \sqrt{5}}+C} \end{split} \end{equation*}

Finally:

{\displaystyle \int \frac{dx}{x^{2}+4x +9} }={\displaystyle \frac{1}{\sqrt{5}} \tan^{-1} \frac{x+2}{ \sqrt{5}}+C}={\displaystyle \frac{1}{\sqrt{5}} \arctan \frac{x+2}{ \sqrt{5}}+C}

Problem 25
Evaluate:
{\displaystyle \int \frac{dx}{a^{2}+x^{2}} }

We can re-write:

{\displaystyle \int \frac{dx}{a^{2}+x^{2}} }={\displaystyle \frac{1}{a^{2}} \int \frac{dx}{1+(\frac{x}{a})^{2}} }

Let:

u=\frac{x}{a} \Rightarrow a\,du=dx

{\displaystyle \int \frac{dx}{a^{2}+x^{2}} }={\displaystyle \frac{a}{a^{2}} \int \frac{du}{1+u^{2}} }={\displaystyle \frac{1}{a}\tan^-{1} u+C}

Back to x

{\displaystyle \int \frac{dx}{a^{2}+x^{2}} }={\displaystyle \frac{1}{a}\tan^-{1} \frac{x}{a}+C}

Finally:

{\displaystyle \int \frac{dx}{a^{2}+x^{2}} }={\displaystyle \frac{1}{a}\tan^-{1} \frac{x}{a}+C}={\displaystyle \frac{1}{a}\arctan \frac{x}{a}+C}

Problem 26
Evaluate:
{\displaystyle \int \frac{dx}{\sqrt{a^{2}-x^{2}}} }

We can re-write:

{\displaystyle \int \frac{dx}{\sqrt{a^{2}-x^{2}}} }={\displaystyle \frac{1}{a} \int \frac{dx}{\sqrt{1-(\frac{x}{a})^{2}}} }

Let:

u=\frac{x}{a} \Rightarrow a\,du=dx

{\displaystyle \int \frac{dx}{\sqrt{a^{2}-x^{2}}} }={\displaystyle \frac{1}{a} \int \frac{a\,du}{\sqrt{1-u^{2}}} }={\displaystyle  \sin^{-1} u +C }

Back to x

{\displaystyle \int \frac{dx}{\sqrt{a^{2}-x^{2}}} }={\displaystyle  \sin^{-1} \frac{x}{a} +C }

Finally:

{\displaystyle \int \frac{dx}{\sqrt{a^{2}-x^{2}}} }={\displaystyle  \sin^{-1} \frac{x}{a} +C }={\displaystyle  \arcsin \frac{x}{a} +C }

Problem 27
Evaluate: {\displaystyle \int \sqrt{16-x^{2}} \, dx }

This is the scenario containing a^{2}-u^{2}

In this istuation, a=4

Here u=x

Let u=4 \sin \theta \Rightarrow x=4\sin \theta

dx=4 \cos \theta d\theta

\sqrt{16-x^{2}}=\sqrt{16-16\sin^{2} \theta}=\sqrt{16(1-\sin^{2} \theta)}=4\sqrt{1-\sin^{2} \theta}=4\cos \theta

Back to the equation

(2)   \begin{equation*} \begin{split} \displaystyle \int \sqrt{16-x^{2}} \, dx }&= {\displaystyle 4\int \cos \theta \cdot 4 \cos \theta \, d\theta }\\ &= {\displaystyle 16\int \cos^{2} \theta \, d\theta }\\&={\displaystyle 16\int \frac{\cos 2\theta+1}{2} \, d\theta }\\ &={\displaystyle 8\int \cos 2\theta \, d\theta + 8\int \theta \, d\theta}\\&={\displaystyle \frac{8}{2}\sin 2\theta+8 \theta +C}\\ &= {\displaystyle 4 \cdot 2\sin \theta \cos \theta+8 \theta +C} \end{split} \end{equation*}

But we know that:

x=4\sin \theta \Rightarrow \sin \theta=\frac{x}{4}

4\cos \theta=\sqrt{16-x^{2}}\Rightarrow \cos \theta=\frac{1}{4} \sqrt{16-x^{2}}

x=4\sin \theta \Leftarrow \theta=\arcsin \frac{x}{4}

Back to our original equation:

(3)   \begin{equation*} \begin{split} \displaystyle \int \sqrt{16-x^{2}} \, dx }&= {\displaystyle 4 \cdot 2\sin \theta \cos \theta+8 \theta +C}\\ &={\displaystyle 4 \cdot 2 \cdot \frac{x}{4} \cdot \frac{1}{4} \sqrt{16-x^{2}} +8 \arcsin \frac{x}{4}+C } \\ &={\displaystyle \frac{x}{2}\sqrt{16-x^{2}}+8 \arcsin \frac{x}{4}+C  } \end{split} \end{equation*}

Finally:

{\displaystyle \int \sqrt{16-x^{2}} \, dx }={\displaystyle \frac{x}{2}\sqrt{16-x^{2}}+8 \arcsin \frac{x}{4}+C  }

Be the first to comment

Leave a Reply

Your email address will not be published.


*