Solved Problems

Solved Problems

A stranger asked about his age replied :
If I have to reach 100 years, the half of the \frac{5}{6} of the \frac{9}{4} of my age is 12 years more than the \frac{3}{4} of the \frac{11}{13} of my remaining time to live. Find my age.

Solution:

Let x be the stranger’s age.
The time remaing to reach 100 years in years is 100-x

We have the equation:
\frac{1}{2}\cdot \frac{5}{6}\cdot \frac{9}{4}\cdot x=\frac{3}{4}\cdot \frac{11}{13}\cdot (100- x)
After simplification (see video how)
\frac{5}{4}x=\frac{11}{13}(100-x)+16
After multiplying both sides by 4\times 13
It yields:
13 \times 5x=4 \times 11(100-x)+16 \times 4 \times 13
65x=44 \times 100-44x+832
109x=5232
\frac{109x}{109}=\frac{5232}{109}
x=48
The stranger’s age is 48
Remaining time in years : 100-48=52

Let’s check it out:

\frac{9}{4}\; of\;48=\frac{9 \times 48}{4}
\frac{9}{4}\; of\;48=9 \times 12
\frac{9}{4}\; of\;48=108

\frac{5}{6}\; of\;108=\frac{5 \times 108}{6}
\frac{5}{6}\; of\;108=5 \times 18
\frac{5}{6}\; of\;108=90
\frac{1}{2}\; of\;90=\frac{90}{2}
\frac{1}{2}\; of\;90=45

Now the second side:
\frac{11}{13}\; of\;52=\frac{11 \times 52}{13}
\frac{11}{13}\; of\;52=11 \times 4
\frac{11}{13}\; of\;52=44

\frac{3}{4}\; of\;44=\frac{3 \times 44}{4}
\frac{3}{4}\; of\;44=3 \times 11
\frac{3}{4}\; of\;44=33

Finally:
33+12=45

We compare:
45=45

 

Correct Solution.

Be the first to comment

Leave a Reply

Your email address will not be published.


*