Sum and difference formulas

Sum and difference formulas

We have seen in the past cases where we had to use these sum and difference formulas. At this stage, we are now exploring them to be able to use them even better.

Now that we know how to identify functions of a given angle. Now we’ll see what those functions are when two angles are added and when two angles are subtracted.

Let’s take two angles \alpha and \beta and use some of well-known “postulates” fro Geometry.

Angle \alpha is in \triangle DAE

Angle \beta is in \triangle FAC

Angle \alpha+ \beta is in \triangle BAC

We know that:
\sin (\alpha+ \beta)=BC

But we can see that BC=BG+GC

\cos \alpha=\frac{AH}{AF}

\sin \beta=FC

But from \triangle GCF we have:
\cos \alpha=\frac{GC}{FC}=\frac{GC}{\sin \beta}\Rightarrow GC=\sin \beta \cdot \cos \alpha

From \triangle HAF we can see that:
\sin \alpha=\frac{HF}{AF}

From \triangle FAC we can see that:
\cos \beta=AF

That yields:
\sin \alpha=\frac{HF}{\cos \beta} \Rightarrow HF=\sin \alpha \cdot \cos \beta

We can also see that: BG=HF

Finally:
\sin (\alpha+ \beta)=BC=BG+GC=\sin \alpha \cdot \cos \beta+\sin \beta \cdot \cos \alpha

 \sin (\alpha+\beta)=\sin {\alpha}\cos \beta+ \cos {\alpha} \sin \beta

Sum and difference formulas using distances

We should remember that the distance between two points is:

d=\sqrt{(X_2-X1)^{2}+(Y_2-Y1)^{2}} where the coordinates pairs are (X_1,Y_1) and X_2,Y_2)

In the following figure:

\triangle BAD \cong \triangle CAE

(BD)^{2}=(CE)^{2} by CPCTC

(\cos \alpha-\cos \beta)^{2}+(\sin \alpha+\sin \beta)^{2}=(\cos (\alpha+\beta)-1)^{2}+(\sin (\alpha+\beta))^{2}

\cos^{2} \alpha-2\cos \alpha \cos \beta+\cos^{2}\beta+ \sin^{2}\alpha+2\sin \alpha \sin \beta+\sin^{2}\beta=\cos^{2} (\alpha +\beta)-2\cos (\alpha+\beta)+1+\sin^{2} (\alpha +\beta)

Simplifying:
2-2\cos \alpha \cos \beta+ 2\sin \alpha \sin \beta=-2\cos (\alpha+\beta)+2

This yields:

\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta

Using complex numbers and the de Moivre’s formula

Before we proceed, it should be noted that for two complex numbers to be equal, the real parts must be equal and the imaginary parts must be equal.

z=a+bi

z'=a'+b'i

a=a'\; and \; b=b' \Rightarrow z=z'

We know that z=e^{i\alpha}=\cos \alpha+ i\sin \alpha

z'=e^{i\beta}=\cos \beta+ i\sin \beta

zz'=e^{i\alpha}e^{i\beta}=e^{i(\alpha+\beta)}=\cos (\alpha+\beta)+ i\sin (\alpha+\beta)

Also:

zz'=(\cos \alpha+ i\sin \alpha)(\cos \beta+ i\sin \beta)=\cos \alpha \cos \beta+i^{2}\sin \alpha \sin \beta+i(\sin \alpha \cos \beta+\cos \alpha \sin \beta)

\cos (\alpha+\beta)+ i\sin (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta+i(\sin \alpha \cos \beta+\cos \alpha \sin \beta)

This yields:

cos (\alpha+\beta)=cos \alpha cos \beta-\sin \alpha \sin \beta

\sin (\alpha+\beta)=\sin \alpha cos \beta+cos \alpha \sin \beta

This open the gates to a long list of trigononetric formulas that we cover in next chapters.

Be the first to comment

Leave a Reply

Your email address will not be published.


*