Truncated Cone or Frustum Area and Volume

truncated cone1

Truncated Cone Area and Volume

Truncated Cone Area and Volume

A truncated cone is the result of cutting an entire cone by a plane parallel to the base and removing the part containing the apex.

The height h  is the distance O_{1}O_{2} between the centers of the bases.

 

Area of the truncated cone or frustum

Truncated cone2

To calculate the area of the truncated cone, we will consider the two cones:

-The entire cone with Base O_1 and apex Q

-The removed cone with Base O_2 and apex Q

-The difference will help calculate the lateral area and later the volume of the truncated cone.

The 2 slants:

s_1=\sqrt{(h+x)^{2}+r_{1}^{2}}

s_2=\sqrt{x^{2}+r_{2}^{2}}

 

TheLateral Areas:

A_1=\pi r_{1}\sqrt{(h+x)^{2}+r_{1}^{2}}

For the removed cone:

A_2=\pi r_{2}\sqrt{x^{2}+r_{2}^{2}}

The Lateral Area:

(1)   \begin{equation*}\begin{split}L.A&.=A_{1}-A_{2}\\&=\pi r_{1}\sqrt{(h+x)^{2}+r_{1}^{2}}-\pi r_{2}\sqrt{x^{2}+r_{2}^{2}}\end{split}\end{equation*}

 

-Let’s find x

From the similar triangles above:

\frac{h+x}{r_{1}}=\frac{x}{r_{2}}

This yields:

(h+x)r_{2}=r_{1}x

r_{2}h+r_{2}x=r_{1}x

x(r_{1}-r_{2})=r_{2}h

x=\frac{r_{2}h}{r_{1}-r_{2}}

Back to the Lateral Area:

(2)   \begin{equation*}\begin{split}L.A.&=\pi r_{1}\sqrt{(h+\frac{r_{2}h}{r_{1}-r_{2}})^{2}+r_{1}^{2}}-\pi r_{2}\sqrt{\frac{r_{2}^{2}h^{2}}{(r_{1}-r_{2})^{2}}+r_{2}^{2}}\\&=\frac{\pi r_{1}}{r_{1}-r_{2}}\sqrt{(h(r_{1}-r_{2})+r_{2}h)^{2}+ r_{1}^{2}(r_{1}-r_{2})^{2}}-\frac{\pi r_{2}}{r_{1}-r_{2}}\sqrt{r_{2}^{2}h^{2}+r_{2}^{2}(r_{1}-r_{2})^{2}}\\&=\frac{\pi r_{1}}{r_{1}-r_{2}}\sqrt{(hr_{1}-hr_{2}+r_{2}h)^{2}+r_{1}^{2}(r_{1}-r_{2})^{2}}-\frac{\pi r_{2}}{r_{1}-r_{2}}\sqrt{r_{2}^{2}(h^{2}+(r_{1}-r_{2})^2)}\\&=\frac{\pi r_{1}}{r_{1}-r_{2}}\sqrt{h^{2}r_{1}^{2}+r_{1}^{2}(r_{1}-r_{2})^{2}}-\frac{\pi r_{2}}{r_{1}-r_{2}}\sqrt{h^{2}r_{2}^{2}+r_{2}^{2}(r_{1}-r_{2})^{2}}\\&=\frac{\pi r_{1}r_{1}}{r_{1}-r_{2}}\sqrt{h^{2}+(r_{1}-r_{2})^{2}}-\frac{\pi r_{2}r_{2}}{r_{1}-r_{2}}\sqrt{h^{2}+(r_{1}-r_{2})^{2}}\\&=\pi (r_{1}+r_{2})\sqrt{h^{2}+(r_{1}-r_{2})^{2}}\end{split}\end{equation*}

Finally:

\mathbf{L.A.=\pi (r_{1}+r_{2})\sqrt{h^{2}+(r_{1}-r_{2})^{2}}}

Area of the Base:

B=\pi r_{1}^{2}+\pi r_{2}^{2}

B=\pi (r_{1}^{2}+r_{2}^{2})

The Total Area:

T.A.=\pi (r_{1}^{2}+r_{2}^{2})+\pi (r_{1}+r_{2})\sqrt{h^{2}+(r_{1}-r_{2})^{2}}

 

Volume of the truncated cone:(Frustum)

We already found the expression of x

The volume follows the same method of substracting the two cones:

The volume of the cone is:

V=\frac{1}{3}Bh

We have two cones here:

The cone with base O_1

V_1=\frac{1}{3}\pi r_{1}^{2}(h+x)

And the cone with Base O_2

V_2=\frac{1}{3}\pi r_{2}^{2}x

The volume of the frustum:

V=V_1-V_2

V=\frac{1}{3}\pi r_{1}^{2}(h+x)-\frac{1}{3}\pi r_{2}^{2}x

V=\frac{1}{3}\pi(r_{1}^{2}h+r_{1}^{2}x-r_{2}^{2}x)

V=\frac{1}{3}\pi(r_{1}^{2}h+(r_{1}^{2}-r_{2}^{2})x)

With the expression of x

(r_{1}^{2}-r_{2}^{2})x=(r_{1}^{2}-r_{2}^{2})\frac{r_{2}h}{r_{1}-r_{2}}

(r_{1}^{2}-r_{2}^{2})x=\frac{(r_{1}+r_{2})(r_{1}-r_{2})(r_{2}h)}{r_{1}-r_{2}}

(r_{1}^{2}-r_{2}^{2})x=(r_{1}+r_{2})r_{2}h

(r_{1}^{2}-r_{2}^{2})x=r_{1}r_{2}h+r_{2}^{2}h

Back to the volume of the frustum

V=\frac{1}{3}\pi(r_{1}^{2}h+(r_{1}^{2}-r_{2}^{2})x)

V=\frac{1}{3}\pi(r_{1}^{2}h+r_{1}r_{2}h+r_{2}^{2}h)

V=\frac{1}{3}\pi h(r_{1}^{2}+r_{1}r_{2}+r_{2}^{2})

Finally:

V=\frac{1}{3}\pi h(r_{1}^{2}+r_{1}r_{2}+r_{2}^{2})

Be the first to comment

Leave a Reply

Your email address will not be published.


*